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F-910352-13
FOREWORD

This document is the Technical Report for the Study of Trajectories and
Upper Stage Propulsion Requirements for Exploration of the Solar System. The
study effort was sponsored by the Mission Analysis Division of NASA Headquarters,
OART, Moffett Field, California, under Contract No. NAS2-2928.

The complete results of the study are contained in the following volumes:

Volume I - Summary

Volume IT - Technical Report

Volume IIT - User's Manual for Power-Limited Trajectory
Optimization Computer Program

The current study is an extension to the original one~year contract which
began in July 1965. The period of performance for the extension was from -
August 1966 to September 1967. Interim quarterly reports published under the
contract extension are United Aircraft Research Laboratories Report E-910352-10,
November 1966, and F-910352-11, February 1967, both entitled "Study of Trajectories
and Upper Stage Propulsion Requirements for Exploration of the Solar System', and

F-910352-12, "Aids for Analyzing Constant-Thrust, Low-Acceleration Propulsion
Systems".
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SECTION I

SUMMARY

This report summarizes the work accomplished under Modification No. 4 of NASA
Contract No. NAS2-2928 between the United Aircraft Research Laboratories and the
Mission Analysis Division, Office of Advanced Research and Technology.

Objectives and Scope

The basic objective of thls research effort 1s to develop user-oriented
computer programs for solving selected trajectory and system optlmization problems
characteristic of low-acceleration, power-limited, constant-thrust (electrically
propelled) interplanetary vehicles. A series of heliocentric trajectory and
gsystem optimization problems was first formulated by the calculus of variations,
and selected problems from this serles were solved by the implicit finite-
difference Newton-Raphson algorithm. The problem of combining the heliocentriec
trajectory phase with the planetocentric phase (for low acceleration solely or in
combination with high acceleration) was analyzed to justlfy the computational
separation of each phase in the minimization of the overall vehicle mass.

Major Results and Accomplishments

In general, the research effort produced programs which simultaneously
optimized both the propulsion system and the trajectory (system-trajectory optimi-
zations), a combined high- and low-acceleration mass minimization program, a
suggested procedure for optimizing an all-electric vehicle, improvements in the
previously developed constant=-thrust, a single-coast system-trajectory optimization
program, and complete sets of variational equations for a series of system-
trajectory optimlization problems of near-term and future interest. Although
attempts were not made to solve all of the formulated problems of the series, those
that were successfully programmed represent a considerable achievement in the
economical computation of accurate, optimum, constant-thrust, multiple-coast, power-
limited trajectories; especially in view of the fact that the propulsion system
parameters are simultaneously optimized for given hyperbolic excess speeds and
variable power.

Summarized below are specific major results and accomplishments of several
programming, numerical,and analytical studies which contributed to the formulation,
development, and subsequent utilization of the object computer program. Three
general areas of effort are presented. These include, first, the computer programs
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developed for analyzing certaln power-limited, hellocentric trajectory and system
optimization problems, and for minimizing the mass of mixed high- and low-
acceleration propulsion vehicles. Presented next are the results of the numerical
and analytical treatments concerning the problem of thrusting within the planet's
sphere of influence (low acceleration solely or in combination with high acceler-
ation) and the associated problem of calculating trajectories which transit the
gravitational fields of both the planet and the sun. The third effort consists of
the variational formulations for trajectory problems of interest not only to the
present study but also of general interest for fubture programming efforts and
subsequent mission mode studies.

From these several areas of study, additional problems of both a trajectory
and system nature emerge which are of interest in the overall plan of analyzing
electric propulsion mission modes and concepts. These important areas are
presented under Recommendations for Future Studles.

Developed Computer Programs

1. szig;ggzigp_pg.E@l;gpgp&yip_fgygyzpimgﬁg@_?g@ipgﬁgyigi
Planet-to~planet rendezvous is treated with an internal discrimination

between one or two coast periods. One-way planetary flybys are included with
either one or two coasts allowed. Hyperbolic excess speeds are to be specifiled at
both departure and arrival for the rendezvous whereas only the departure need be
given for the flyby (final hyperbolic speed is open). In both modes the option is
given for optimlzing either the exhaust velocity and powerplant fraction. Power,
a function of heliocentric position or constant, is an option as 1s the choice of
two~ or three-dimensional trajectories.

A round-~trip stopover mission can be optimlized with respect to the distri-
bution of outbound and inbound legs for fixed total trip time, planetary stay time,
and given hyperbolic velocities. The hyperbolic velocities are to be specified at
Earth departure, planetary arrival and departure, and either specified or left
open for Earth arrival. The variable-thrust, constant-power operating mode is used.

A user's manual was developed as part of this programming effort.
Sufficient informatlon and guidelines are described to reduce the time required in
familiarizing the user with the general operating characteristics of the program
and to expedite the computation of desired trajectories. This manual is given in
Volume III of this report and is considered to be an integral part of the helio-
centric trajectory optimization program.

2. Minimization of Hybrid-Thrust Vehicle Mass

e o v e — o — (s ot G St pom S pm e

The initial mass on Earth parking orbit is minimized for a vehicle employing
mixed high- and low-acceleration propulsion. The flight modes are parking
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orbit to parking orbit, one-way flyby, and round-trip stopover. In the first case,
high thrust 1s used for departure and arrival, while low-thrust is employed in
between. In the second case, there ls no high-thrust propulsion at planetary
arrival. The third case is a combination of the first two. Actual masses (not
dimensionless fraction) are computed for the high-thrust and low-thrust systems
once payload mass and hyperbolic speeds are given. A search procedure is used to
determine the optimum combination of high-low thrust which results in minimum
vehicle mass for the glven payload. A range of high-thrust propulsion is possible
through the specification of certaln engine parameters.

3. Improved Single-Coast Trajectory_Program

The previous single-coast, constant-thrust program was improved by
employlng closed-form expressions for optimum exhaust velocity and powerplant
fraction which are based on a given thrustor efficlency function and a simplified
payload fractlon definition. These expressions are used in conjunctlon with the
trajectory optimilzation subroutine to obtaln results of lnterest by themselves or
for use as starting guesses for an improved payload fraction definition. This
lmproved definition accounts for propellant tanks, tle-in structure, and thrustor
mass and efficiency varyilng with exhaust velocity. Optimum exhaust velocity and
powerplant fraction are computed for rendezvous only (specified hyperbolic velocity
at departure and arrival) and for either or both payload definitions.

A closed-form expression ls employed for estimating the maximum powerplant
specific mass which ylelds zero payload for a gilven trajectory. Computatlons of

specific masses greater than this maximum are avoided.

Heliocentric/Planetocentric Trajectory and System Analyses

1. Combined High-Low Thrusting Within the Flanet's Sphere of Influence

A numerical analysis was performed to determine the effects of neglecting
the low=-thrust system's operation within the planet's activity sphere immediately
after high-thrust burnout. The trajectory problem was analyzed by numerically
integrating the planetocentric equations of motion for both high~ and low~thrust
operation until the sphere of influence is reached. In general, the time in which
the low-thrust system has to act is so short that there is negligible difference
in performance if the given hyperbollc excess speed 1s assigned to the high-thrust
system, and the low-thrust system 1s assumed to start (heliocentrically) at the
center of the massless point planet. Both departure and capture modes were
investigated for Jupiter, Mercury, and Earth.

In terms of mission and systems analyses, the combining of high-thrust
planetocentric and low-thrust heliocentric phases as separate reglons related only
by the hyperbolic excess velocity 1s a reasonable assumption.

I-3
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2. Lpﬂ-épggl@g@ﬁ}gp_?}gggﬁpgggﬁgﬁg.§pi;§;

The low-thrust spiral, departure or capture, was studied by using analytic
expressions available in the literature. Two aspects were studled, first, the
spiral about a single gravity field whlch is assumed to extend to infinity and
second, a spiral that accounts for properly switching the computations from the
planet's gravity field to that of the sun (see Item 3 following). The spiral
trajectory requirements were represented by equatlons giving the burnout or final
mass ratio as a function of exhaust velocity and powerplant fraction. The study
resulted in a procedure (not programmed ) for optimizing the exhaust velocity and
powerplant fraction of an all-electric vehicle that goes from parking orbit,
through a heliocentric transfer,and either captures on a planetary parking orbit
or attains some final heliocentric position or velocity.

A theoretical study of the motion of a low-thrust vehicle as it moves
between a planetary gravity field and the solar field was performed to account for
the planetary perturbations in the performance calculations. Both spiral and
hyperbolic escape trajectories were considered. For the low-thrust spiral, an
equation 1s presented for computing the performance up to the proper time at which
the calculation is transferred to a heliocentric reference with no vehicle position
offset with respect to the planet. Relations for the requilred velocity and position
offsets are derived for the low-thrust hyperbolic trajectories. In both cases it
is shown that the error in the approximations is on the order of the ratio of the
mass of the planet to that of the sun. The effect of finite periplanet radius is
also of the same order.

L. Alds_for Anelyzing Constant-Thrust Systems
The closed=-form expressions for optimum exhaust velocity and powerplant

fraction used in the improved single-coast program were plotted to develop a series
of graphs for quickly estimating the performance of constant-thrust systems. Given
the trajectory requirements in terms of J (J = fa2 dt) and powered time, the
optimum system parameters may be quickly estimated for a glven powerplant specific
mass, &, and thrustor efficiency parameter, 4. For the same input values and parameters,
a graph 1s used to estimate the maximum powerplant specific mass which produces
zero payload. Although the foregoing graphs are for the simplified payload
fraction (defined as the final mass fraction less the powerplant fraction),
equations of the optimum system parameters for the lmproved payload definition were
developed along with possible procedures for thelr solution. These equations were
programmed as part of the improved single-coast constant-thrust optimization
program.
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Variational Formulations of Heliocentric Trajectory Problems

Complete sets of differential equations and related transversallty conditions
for the followlng problems were developed by use of the calculus of variations.
The list is quite extensive, and not all the problems were programmed for solutlon
by the trajectory optimization deck.

1. The first problem concerns three-dimensional trajectory and control
optimization with the thrustor constrained to constant-exhaust-velocity on-off
operation. The power available 1s a given function of position and time corres-
ponding to decaying radioisotope power or solar power. The objective is maximum
final mass fraction for given values of powerplant specific weight, powerplant
fraction, and exhaust velocity. The boundary conditions correspond to (a) planetary
rendezvous, (b) planetary flyby, (c) flyby at a given radius, and (d) orbital
transfer.

2. This problem includes all of problem 1, but in addition, the powerplant
fraction, MW’ and the exhaust velocity, C, as well as the trajectory and the
agsocliated steering program, are to be optimized. The objective function is
maximum payload fraction which is defined to be everything that is left at the end
of the mission except the powerplant, thrustor, and the structure.

3. In this problem, two separate propulsion units are used, one before and
one after the coast period. The exhaust velocity and powerplant fraction of each
unit are optimized with respect to final payload fraction.

L. This problem is the same as problem 1 except that the thrust-acceleration
vector is constrained to make a constant angle with respect to the radius vector.
One constant angle is allowed before coast and another after coast. These two
angles are to be separately optimlzed with respect to maximum final mass.

5. The round-trip stopover mission is treated for minimlzing the mass of the
electrically propelled vehicle (after staging of the initial high-thrust Earth
departure propulsion for a given payload back at Earth). High-thrust impulses at
Earth departure and planetary arrival and departure are included along with
atmospheric braking at Earth return. Two power-limited propulsion systems are
employed for the inbound and outbound heliocentric transfers; the latter system -
1ncluding powerplant, thrustor, and tankage - is staged at the planet along with
the capture high-thrust stage. The trajectory optimization includes optimizing the
distribution of leg times, the launch date for fixed trip time and planetary stay
time, and the directions of the hyperbolic excess velocities attributed to high
thrust.

The corresponding variable~thrust solution of the round-trip stopover

I-5
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mission is required as a starting approximation. Accordingly, variable-thrust
transversality conditions are included corresponding to the constant-thrust case.

6. A round-trip planetary flyby is considered for the variable-thrust
operating mode. The problem is treated in two parts: no constraint on the peri-
radius, and a fixed periradius. The second part is solved if the first produces a
periradius lower than the minimum bound imposed by a flight constraint; e.g.,
radius of the sensible atmosphere. By the use of internal transversality conditions
at the planet, both the outbound and inbound legs are solved for simultaneously.

The best launch date, best flyby date, and the optimum characteristics of the flyby
encounter are computed.

T. Although not a calculus of variations problem, the problem of substituting
analytic solutions for numerical solutions in the coast regions was investigated as
a possible approach to reducing the number of mesh points. Analytic solutions for
both the trajectory and the primer vector in the coast regions are developed and
coupled with the numerical procedure at the switching points. These solutions,
however, were not incorporated into the developed computer programs (Item 1, above).

Recommendations for Future Studies

The following list of recommended studies is a result of the background and
experience obtalned in the performance of the study contract. The list is limited
to those activities which would directly aid in expanding current capabilities of
power-limited flight analysis and in applying such capabilities to the ultimate
goal of determining the role of electrically propelled spacecraft in the explor-
ation of the solar system. It should be noted that the first three items listed
are essentially study projects with the third being oriented more towards a survey.
The remaining items are basically tasks which contribute to an overall goal of
developing valuable study tools for power-limited systems and would therefore
contribute significantly to the efforts of the first three recommended studies.

1. A system study should be initiated to determine the implications of high-
plus-low-acceleration mission modes on the development of candidate power systems
and thrustors and to the identification and, consequently, planning of the role of
electrically propelled vehicles in solar system exploration. Such a study should
have as its objective the comparison and evaluation of projected power systems and
thrustors as related to a range of unmanned and, possibly, manned missions. In
addition, the study should determine desirable and feasible characteristics of
future primary propulsion power systems and should attempt to cambine these
characteristics (for different classes of powerplants) into a postulated design
which would perform all or most of the missions either singly or by "clustering."

2. To ensure the broadest possible stimulation of new mission and flight mode

I-6
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concepts and to expedite the evaluation of such concepts, a mission/system analysis
alds manual would be an invaluable tool. The spirit and philosophy of such an alds
manual would parallel that of the NASA Planetary Fllght Handbook, SP-35. Because
of the coupling between the propulsion system and the power-limited trajectory it
is not possible to merely catalogue tables or graphs of trajectory requirements as
is done for impulsive transfers. Therefore, a manual 1s envisioned which would
include not only representative trajectory requirements but also techniques for
estimating optimum constant-thrust system parameters, methods of extending payload
definitions and computing the assoclated parameters, guldelines for determining
mixed-thrust trajectory requirements, and general information and background data
from past system and mission studies. An additional possibility is the inclusion
of a series of computer programs for solving specific trajectory problems.

3. There presently exists several diverse computer programs for solving
esgentially the same power-limited trajectory problem. A survey should be made of
these computer tools to identify thelr capabilitiles, limlitations, and similarities
such that the possibility of combining some of them could be investigated. The
objective here is to develop combined programs which use the best features of each
for particular problems. For example, a certain program may be capable of quickly
solving the solar probe problem but requires difficult-to-obtain input guesses for
certain varlables. These may be provided by another program which solves
essentlally the same problem more slowly but requires only an unsophisticated
starting solution. In other cases it may be evident that some particular power-
limited trajectory problem 1s more conveniently and quickly solved by a certain
numerical technique than that used in another progran.

4., The preliminary procedure developed for optimlzing the exhaust velocity
and powerplant fraction with respect to payload fraction for a single-stage
electric propulsion system should be programmed. This single-stage system is
capable of two flight modes: 1) planetary parking orbit departure, heliocentric
transfer and planetary parking orbit capture, and 2) planetary parking orbit
departure and heliocentric transfer to a hellocentric position and velocity.

5. The developed multiple-coast trajectory optimization program should be
modified to accept the expanded payload fraction definition in a manner similar to
that accomplished in the original single-coast program. The capability of allowing
for any thrustor efficiency and speclific mass varlation with exhaust velocity
should also be included. This modification is considered to be an add-on item
using the approximation techniques employed in the single-coast program modifi-
cation and is not meant to be a reprogramming effort.

6. Efforts should be made to apply the basic developed computer algorithm to
the problem of variable mesh point spacing. An investigation should be initiated
to determine the added flexibility and broadened trajectory problem scope that
variable mesh spacing produces.
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7. The remailning variational problems which were formulated but not solved
should be investigated by the basilc computer algorithm. Of particular interest
here is the constant-attitude, solar-powered trajectory, the round-trip flyby, the
orbital transfer, and the staging of one (of two) electric propulsion system before
coast.

8. In analyzing the implementation of the finite-difference Newton-Raphson
algorithm made to date, two facts stand out very clearly. First, it 1s a lengthy
and complex job to complete a computer code for a given problem. Although this
difficulty will be eased in the future by the use of generalized subroutines now
completed, thils advantage will be counteracted by the necessity and deslre to
attack more difficult problems. Second, once a computer code has been generated
to solve a problem by means of this algorithm, solutions can be generated fairly
easily and quickly no matter how complicated or nonlinear the prcoblem is. There-
fore, recognizing both the difficulties of implementatlion and the high probability
of success, future uses of this algorithm should be made in areas where the result-
ing data will be extremely useful or in areas where the data are currently
essentially unattainable.

In trajectory analysis, three such study areas present themselves. The
first is a program to choose simultaneously both the terminal hyperbolic excess
speeds and the low-thrust trajectory which minimizes mass on earth orbit for a
given set of vehicle parameters. This area is currently the most time-consuming
process in the analysis of hybrid-thrust missions. The approach would be to
incorporate the currently used approximations and matching laws into the body of
the hellocentric algorithm.

The second is a program to optimize trajectories in a time-varying, n-body,
gravitational field. While the usefulness of such a program might be limited to
checking out currently used matching criteria, there are very little data avallable
which have been achieved through a unified approach. The questions arising for the
case of close approaches to Jupiter are certainly worth answering, and the program
would also offer a convenlent means to study the guldance problem of low-thrust
ascent and descent.

The third is a program for minimum-total velocity lncrement, multiple-
impulse, high-thrust trajectories. At present, only a few examples of such
transfers are available. It is also extremely likely that once these data
became available it would alsoc be very useful in demonstrating both the reduction
of total energy requirements needed for high-thrust missions and, probably more
significantly, the broadening of the launch windows avallable for these missions.
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SECTION IT

INTRODUCTION

Objectives

The purpose of this thirteen-month study was to develop a computer algorithm
t0 be used in optimizing space trajectories which are performed by power-
limited (low-acceleration, electric) propulsion systems. This study, begun in
August 1966, is an extension to the original Contract NAS2-2928, "Study of
Trajectories and Upper Stage Propulsion Systems for Exploration of the Solar
System", which was initiated in July 1965. The basic objective of the study
extension was to develop user-oriented computer programs for solving selected
trajectory and system optimization problems peculiar to low-acceleration, constant-
thrust interplanetary vehicles. A secondary objective was to develop a computer
program capable of minimizing the initial mass of a wvehicle thrusting within the
planet's sphere of influence using low acceleration solely or in combination
with high acceleration.

General Approach

The general approach to the heliocentric trajectory and system optimization
problems was to, first, derive the system of differential equations describing
each optimization problem by the calculus of variations, and second, solve these
systems of equations by the implicit finite-difference Newton-Raphson algorithm.
Rather than develop complete individual computer programs for the several special
problems, a series of generalized subroutines was prepared which would
implement the logical and algebraic aspects of the Newton-Raphson algorithm.
These subroutines represent that part of the overall programming task which is
camon to all the trajectory problems.

The approach to the high plus low=acceleration problem was to develop the
computer programs for the heliocentric and planetocentric phases independent of
each other; the two phases were related in a separate overall mass
minimization program which accounts for the condition of the vehicle at the
assumed transition between the planetary and heliocentric gravitational fields.
The consequent computer programs for each phase provide results for input
to the vehicle mass minimization program rather than attempt to integrate each
program as a subroutine into a system mass computation program.

II-1
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Study Scope

During the performance of the study it became evident that some of the
heliocentric trajectory and system optimization problems originally scheduled
were not compatible with the then-existing numerical techniques in conjunction
with the requirements of computing time and machine storage capacity. The list
of tasks presented in UARL Reports E-910352-10 and F-910352-11 was subsequently
reduced in scope and number to result in the following list. Unless otherwise
specified or implied, the listed tasks are all for constant exhaust velocity and
fixed transfer time. They incorporate hyperbolic excess speeds at the boundaries
and maximization of payload fraction.

I. DPlanet-to-planet rendezvous, internal discrimination between single
and double coast periods, constant power

II. One-way planetary flyby, single or double coast, final hyperbolic
velocity open, constant power

IIT. Tasgks I and II with power a function of radial heliccentric position
or of time

IV. Round-trip planetary stopover, optimum distribution of outbound
and inbound leg transfer times, variable exhaust velocity, constant power.

Task I is a planet-to-planet transfer with given hyperbolic excess gpeeds on
the terminals. The computer program is to be capable of computing the optimum
trajectory and maximum payload fraction simultaneously for either one or two
coasting arcs. The second task is a one-way planetary flyby with a specified
hyperbolic excess speed at departure and a single final coast period.

Both of the foregoing tasks are analyzed for both constant power and variable
power. The variable-power case is represented by an equation giving the power
system output as a function of heliocentric position (i.e., a solar power system)
or as a function of time.

The final task is analyzed under the variable-thrust operating mode rather
than for constant thrust. The hyperbolic excess speeds at the terminals of the
outbound leg are specified, and either the speeds at departure and arrival or
the speed at departure only is fixed. The stay time at the planet is constant
as is the Earth departure date.

The studies of planetocentric operations, i.e., thrusting of the electric propul-
sion system within the sphere of influence (with or without high thrust), attempt to
evaluate the system implications and consequences of such thrusting on the dynamic
condition of the vehicle at the planet’s activity sphere or on the circular parking
orbit. The purpose is to develop computer programs which calculate the performance
of the vehicle within the planet?’s. sphere of influence such that this performance can
be related to and combined with the heliocentric trajectory.
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The discussions of the programming effort and of the resulting computer
programs for the heliocentric trajectory problems are presented in Section III.
Also included is a discussion of the related user's manusl which is a separate
document intended to accompany the decks themselves. An analysis, based on
numerical results, of the combined high- and low-acceleration thrusting mode
within a planet'’s activity sphere is presented in Section IV,

Section V discusses the results of the planetocentric splral analysis and
suggests procedures for optimizing an all-electric vehicle system (no high thrust).
Section VI presents an analytic treatment which justifies the use of hyperbolic
velocities at planet-centered infinity and the assumption of negligible planeto-
centric vehicle displacement at the start of the heliocentric trajectory. 3Both
the problems of low thrust only and of high-low thrust in combination are
discussed.

Certain improvements in the previously developed single-coast, rendezvous
tra jectory program are detalled in Section VII galong with g developed program for
minimizing the mass of a combined high-low acceleration vehicle. The final
technical discussion, Section VIII, gives the variational formulations of the
several heliocentric, system-trajectory optimization problems,
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SECTION IIT

GENERALIZED TRAJECTORY OPTIMIZATION COMPUTER PROGRAM

This section presents an overall picture of the three heliocentric computer
programs worked on under this contract. First, the basic capabilities of each
program are laid out, and, second, a general discussion of the analysis and usage
of the decks is given., The detailed user's information for those decks which have

been brought to a successful operating condition are presented in Volume III of
this report.

Basic Program Capabilities

Program 1 - General Constant-Power Rendezvous or Flyby

Boundary conditions are given by the position and velocity of some body in a
given Keplerian orbit. Initial and final hyperbolic excess speeds are specified.
For the flyby mode, however, final velocity is left open. Multiple-coast arcs are
accounted for except that terminal coasts may occur only at the end of a flyby.

The powerplant specific mass, @&, is specified as is the thrustor efficilency
parameter, d. Specific impulse,. I, (or exhaust velocity) and powerplant fraction,
My, may be specified or optimized in any combination. An option of running the
deck in either the three-dimensional or two-dimensional mode is included.

Program 2 - General Variable-Power Rendezvous or Flyby

This program has the same characteristics as Program 1 except that the power
in the exhaust beam may be specified either as a function of solar radius or as a
function of time.

Program 3 - Variable-I;, Bound Trip.

Launch and return dates are given, and stay time at the target planet is
specified. Also specified are the hyperbolic excess speeds at the beginning and
end of each leg. The second, or return, leg may be considered a flyby.

Numerical and Programming Analyses
At the heart of these three heliocentric, low-thrust, computer decks is the

finite-difference Newton-Raphson algorithm (Ref. III-1) for solving nonlinear,
two-point boundary wvalue problems. This algorithm operates by reducing the
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boundary value problem to a sequence of large, but specially structured, algebraic
systems of linear equations. Mathematically, this reduction can be viewed two ways.
First, at each of many mesh points chosen along the independent variable axis
between the boundary points, the nonlinear, ordinary differentisl equations
describing the problem may be written as algebraic equations by substituting
difference quotients for the derivative terms. Each of these algebraic equationg
will, in general, be nonlinear in the unknown dependent variables and thus will

form a nonlinear system of equations. The Newton-Raphson iteration can be appliea
to this system. Second, however, the entire unknown solution of the differential
equations can be considered as a point in function space. The generalized Newton-
Raphson iteration can be applied directly to the nonlinear differential eguations
resulting in a system of linear differential equations. In this system the unknown
variables are the corrections to be made to an approximate solution which appears

as a known function on the right hand side of the same system. The standard numerical
technigue for solving systems of linear two-point boundary equations is to substitute
difference quotients for the derivatives and solve the resulting system of linear
algebraic equations.

When viewed the second way, the fact that the linear system will be specially
structured becomes self-evident. The matrices involved in solving ordinary,
linear, boundary value problems are of block tridiagonal form. They bear close
relationship to the matrices which arise in the solution of linear partial
differential equations, which have been extensively studied (Ref. IILI-2). From
previous experience, they are known to be very well conditioned when solved by a
direct-elimination method known as the block Thomas algorithm. This method is a
labor-saving and convenient way of applying Gauss elimination to a block tridiagonal
system.

Returning to the finite-difference Newton-Raphson algorithm itself, the
theoretical studies (Ref. III-3) and computational experience both show that,
through its use, solutions are very quickly and easily obtained. Given an initial
approximation to the solution (to be discussed later), usually no more than 5 to 7
terms of the sequence of linear problems must be obtained. The usual terminology
is that each sequential solution of the linear system is a Newton-Raphson iteration.
Also, the fact that no logical decisions have to be made during the course of the
iteration is of no small importance to the success of the method. The user is
concerned only with providing the algorithm with an initial approximation or
starting solution which is within the domain of convergence of the solution and
may completely ignore the workings of the Newton iteration itself.

The computer analyst, however, can hardly ignore the Newton iteration. In
the analysis and programming of the algorithm, there are two major problem areas.
First is the construction of an efficient means of generating the vast numbers of
coefficients which enter into the linear system. This part of the job is, of
course, dependent on the particular equations being used for a given problem and

ITT-2



F-910352-13

must be faced for each new problem or altered for each new modification. Second is
the evaluation of the necessary formulas of linear algebra involving these coef-
ficients in the solution of the large system of linear equations at each iteration.

Due to the magnitude of the second problem, complete advantage must be taken
of any structure of the system which provides for the reduction of computations.
In certain areas, the ordering of the calculations must be analyzed in order to
reduce rounding errors, and, in at least one calculation, double-precision
arithmetic must be used. The problems of current interest require amounts of
computer storage that are usually unavailable, and the logic of using secondary
storage devices must be analyzed, solved, and coded. Initially, the problem of
creating a flexible means of varying the mesh point spacing was envisioned. This
whole second problem area is algebraic and logical in nature and does not depend
on the equations of any particular problem. It is in the area that generalized
subroutines have been developed which may be used for a great variety of tra-
Jjectory problems.

The first attempt to build such a generalized set of subroutines under the
current contract involved the use of successive overrelaxation (SOR) as the
technique used to solve the linear system. The planned inclusion of wvariable mesh
spacing, equations containing first derivative terms, and the use of Cowell's
formula for the second derivative terms, destroyed the block tridiagonal form and
increased the amount of core storage needed. SOR seemed ideally suited to
circumvent these difficulties. However, SOR itself is an iterative method, and it
was discovered that the linear systems which arise from optimization problems are
either very slowly convergent or actually divergent under SOR. The problem seems
to be related to the fact that both a set of differential equations and their
adjoints appear in the system. After the discovery that SOR would not be
satisfactory, some reduction in the scope of the project had to be made. In terms
of the algorithm, this reduction was achieved by abandoning the inclusion of
variable mesh spacing and the use of Cowell's formula. These changes restored the
bloek tridiagonal form of the system which made possible the use of the noniterative
block Thomas algorithm and simplified the use of secondary storage devices. The
necessity of coding the secondary storage for both the IBM 7094 DCS disk storage
and the UNIVAC 1108 drum storage also created some problems.

A significant addition to the finite-difference Newton~Raphson algorithm made
in this study is the inclusion of the capability to solve for the optimum values
of an arbitrary set of parameters simultaneously with the differential equations of
the trajectory. This capability is built into the generalized subroutines for the
algorithm. Although there is an increase in the number of computations to be
performed, the process is much more satisfactory than a search and also avoids the
pitfalls of using approximation and extrapolation techniques based on known data.
Indeed, it has been discovered, for example, that the problem of optimizing a
constant-power, constant-exhaust velocity trajectory from Earth to Mercury and
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simultaneously optimizing the actual value of the exhaust velocity not only results
in a somewhat different value of exhaust velocity than expected, but also turns

out to have a larger domain of convergence. In the constant-thrust decks, the
option to optimize either or both the exhaust velocity and the powerplant fraction
is available. Also, the round-trip, variable-exhaust-velocity deck uses this same
capability to optimize the distribution of leg times.

Starting Solutions and Tracking

Other than the input/output routines, the other significant aspect in the
programs is the computation and manipulation of the initial approximation to the
solution. This area is of significant importance and interest to the users of
these programs as it is in this area where the user must use his understanding of
the problem and ingenuity in order to effectively use the program.

It is appropriate to return for a moment to the concept of viewing both the
functions which are the solution of the differential equations and the wvalues
which are the solution of the parameters to be optimized all as a point in some
function space. Under fairly general conditions, it is known that the Newton
iteration will converge to the solution point from some domain of neighboring
points. However, the computational work required to identify this domain is, for
most practical problems, too great to be justified. Instead, a heuristic approach
at obtaining initial guesses has been taken with considerable success.

The first heuristic principle is that a simple function which is a solution
of the differential equations but which does net satisfy the boundary conditlions of
interest is very often in the domain of convergence of the desired solution. In
trajectory analysis, the two-impulse ballistic trajectory immediately comes to
mind as a candidate. However, the ballistic trajectory would be an extremely
poor choice as a starting solution in cases where multiple coast periods turn out
to be optimum. TFor low-thrust work, the circle start is not only extremely simple
to generate, but also highly satisfactory. Very briefly, the circle start is the
circular coasting trajectory which leaves the launch longitude at time zero and
arrives at the longitude of the target planet at the specifiied time. Thus, the
radius of the circle-start trajectory is determined by the central angle traversed
and the trip time. Further flexibility for more complex trajectories is available
by increasing the central angle by multiples of 360 degrees. Strictly speaking,
the circle start is a solution only of the variable-I;, edquations, since any arc
with no thrusted period will be singular for the constant-I;, equations. Thus, ,
the circle start is used to obtain s variable-I;, trajectory, and this trajectory is
then used as a starting solution for the constant I, trajectory.

The second heuristic principle used is based on the fact that the trajectories
vary continuously with respect to both the boundary conditions and the specified
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system parameters. Thus, once a trajectory has been obtained, it may be used as a
starting solution for a trajectory which differs somewhat in either boundary
conditions or system parameters. This procedure is called tracking. The important
point is not the magnitude of the change of the input variables, but the magnitude
and nonlinearity of the changes in the solution variables. Thus, for instance,

it may be possible to change the arrival date of an Earth-Jupiter trajectory by
twenty or thirty days and still converge to a solution, but a change in the arrival
date of an Earth-Mercury trajectory may be limited to one or two days,

Tracking on hyperbolic excess speeds at launch and arrival can be particularly
troublesome. The best opportunities for high-thrust and low-thrust trajectories
occur at different dates. Thus, when the hyperbolic excess speeds are varied for
a Tixed trip, the nature of the trajectory may change profoundly. While this
behavior is especially true for multiple-coast trips, unexpected variations have
occurred even in the simplest of cases. The net result is that not only do different
tracking increments have to be used in different cases but also the number and
position of the coasting periods must be monitored closely.

A gimilar situation has been uncovered in the optimization of the exhaust
velocity. The curve of optimum I;;, plotted against powerplant specific mass, o,
for a given trip, starts off with a steep initial downward slope for small values
of oy. Then the function usuvally turns fairly sharply and exhibits a fairly
gentle downslope until some maximum ¢4 is reached for which it is no longer
possible to make the trip. Again, care must be taken to use tracking steps, in
Oy , which are small enough in the steep region.

A further variation of tracking is available on the circle start. It has
already been noted that the circle start is a solution of the differential
equations which does not satisfy the boundary conditicns of interest. However,
the circle start does satisfy its own circular boundary conditions. Thus, by
partitioning the difference in the boundary values between the circle start and
the final trajectory in small increments, almost any variable-I;, trajectory can
be reached. This procedure is available in the programs and is known as an iterated
circle start. It is especially useful when central angles of over 360 degrees are
required.

General Program Operation

In summary then, a typical computer run goes as follows. One, the circle
start trajectory will be set up. Two, a solution of a variable-I,, trajectory
with the specified hyperbolic excess speeds and proper boundary conditions is
obtained. If difficulty 1s encountered at this point, the use of more iterations
on the circle start boundary conditions will most always suffice. Three, the
corresponding constant-thrust trajectory is obtained. This is probably the most
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difficult step of the process. Very little can be done directly if this step
does not work.

Remedial procedures which could be utilized are as follows. The parameters
of the constant-thrust trip can be changed, especially ¢, which may be made
smaller. The ratios of the estimated constant-thrust J to variable~thrust J, or
of estimated thrusted time to total transfer time may be changed. The mode of
simultaneously solving for I,p, and iy, along with the trajectory is more likely
t0 succeed than to specify these quantities. However, if all else fails, tracking
to the desired constant-thrust trajectory from another constant-thrust trajectory
will have to be employed. Four, assuming the constant-thrust trajectory is reached,
another constant-thrust trajectory may be obtained by tracking. If this step fails,
usually a decrease in the incremental change made in the input variables will
achieve the desired result.

An example of the initial results obtained from the program is displayed in
Figs. III-1 and ITI-2 for a 320-day constant power, Mars-to-~Earth rendezvous in
1980. The first figure illustrates the position-time history of the two-coast
trajectory and the times at which the thrust is turned off or on. Although the
rayload fraction has not been maximized with respect to specific impulse and
powerplant fraction, the initial guesses made within the program are very close to
optimum. For this trip it is estimated by other means that the optimum specific
impulse and powerplant fraction should be 20,400 sec and 0.09, respectively, with
a resulting maximum payload fraction of about 0.8l. The powerplant specific mass
of 1 kg/kw was chosen merely to assure convergence for the given example.

The magnitude of the primer vector is plotted in Fig. III-2 to indicate the
regions of thrusting and coasting and their points of occurrence, as expected, in
relation to the shape of the curve. Note that, as required for an optimum

trajectory, the primer vectors are equal at the initiation and termination of a
coast period.

Two warnings in the use of these programs must be noted. First, they are new
programs with limited computing experience. All individual options have been
checked, however all valid combinations of options have not. Therefore, it is
possible that some program errors may remain. Second, and more fundamental,
these programs solve equations which are intractable analytically and for which
the nature of their solution is not well known. Thus, cases should arise where
new knowledge concerning the basic form of the trajectories will be gained. In
this respect it is impossible merely to use these programs as mission: analysis
tools without concurrently attempting to gain insight into the nature of the
trajectories being computed.

ITI-6



F-010352-13

III-1.

ITI-2.

III-3.

Section III References

Van Dine, C. P., W. R. Fimple, and T. N. Edelbaum: "Application of a
Finite-Difference Newton-Raphson Algorithm to Problems of Low-Thrust

Trajectory Optimization." Progress in Astronautics, Vol. 17, Academic
Press, Inc., New York, 1966.

Varga, R. S.: Matrix Iterative Analysis. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1962.

Kantorovich, L. V. and G. P. Akilov: Functional Analysis in Normed Spaces.
Pergamon Press, New York, 1964, Chap. XVIII.

ITIT-7



F-910352-13 FIG. TII - |

OPTIMUM MULTIPLE - COAST, CONSTANT - THRUS‘T TRAJECTORY

320~ DAY 1980 MARS-EARTH TRIP

J = 20.61 M%sEec® {4 = 0.8063 d = 20 KM/SEC
I o 19791 SECS = 0.0921 M = 0.9895
Vy = Vgz0
1.0
0.5 22
al
Y ]
e
2 -0.5 :
< fEcE: i
&de
=
1.0
1.5
2.0} g
-1.5 -1.0 = -0.5 0 0.5 1.0 1.5
AU



F-910352-13

OPTIMUM

MAGNITUDE OF PRIMER VECTOR

_ FIG.III - 2
MULTIPLE - COAST, CONSTANT - THRUST TRAJECTORY
PRIMER VECTOR TIME HISTORY
320- DAY 1980 MARS- EARTH TRIP
vd’ 4480 AR® 4800
J=20.61 M%/sEC? g, = 0.8063
Igp=19791 SEC fy = 0.0921
0.25
0.20
0.15 \
0.10
THRUST
OFF ON OFF ON
No’ /
0.05 = N
N/
0
0 100 200 300 400 500

MESH POINT NUMBER



F-910352-13

SECTION IV

HIGH-LOW THRUST PLANETOCENTRIC OPERATIONS

Introduction

The usual boundary conditions which are specified for low-thrust heliocentric
trajectory analysis consider the departure and arrival planets as massless points
moving through heliocentric space with known ephemeral motions. The inter-
planetary vehicle is assumed either to have the planet's velocity (planetocentric
hyperbolic excess velocity equal to zero) or to have a heliocentric velocity which
exceeds the planet's velocity by a known, required planetocentric hyperbolic excess
velocity.

Also, it is assumed that the planetocentric hyperbolic excess velocity is
imparted to the vehicle by a high-thrust propulsion system (to reduce mass require-
ments and planetocentric maneuver time) and that after high-thrust burnout the
vehicle coasts on a hyperbolic trajectory to the planet's sphere of influence.

Upon reaching the sphere of influence, a coordinate transformation is made and the
heliocentric low-thrust mission phase is initiated. The sequence of events is
reverged for planetary capture. Although this operation is labeled as & mixed
high-low thrust mission mode, the high-thrust and the low~thrust operational modes
are completely uncoupled and are ''patched" at the planetocentric sphere of influence
at departure or arrival. In many cases the planetocentric operational phase is
completely neglected except for the fact that a required hyperbolic excess speed

is specified at initiation and conclusion of the heliocentric trajectory. How

this excess speed is produced is usually not considered in low-thrust helilocentric
mission analyses.

An interesting problem arises when the vehicle is required to initiate low-
thrust propulsion within the planetocentric field and to continue it through the
sphere of influence. In this operational mode, the high-low mix is coupled
throughout the entire mission. ILow-thrust propulsion may begin at any time from
high-thrust termination up to the time the vehicle passes through the sphere of
influence; likewise, high-thrust vehicle propulsion parameters significantly affect
the vehicle's condition upon arrival at the sphere of influence. Once the low-
thrust system is assumed to operate within the planetocentric activity sphere, the
structure of mixed high~ low-thrust operational mode is somewhat altered from the
situation in which the high- and low-thrust systems are uncoupled.
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When mixed thrusting occurs within the planetocentric sphere of influence,
the application of the trajectory data to the mission analysis may take one of
two approaches, one affecting heliocentric operations and the other affecting
planetocentric operations. The former requires that, for a given mission with
specified high~thrust hyperbolic excess speeds for departure and/or capture, the
vehicle arrives at the sphere of influence with greater hyperbolic excess speed.
This directs that the heliocentric phase have new velecity boundary conditions;
thus, the heliocentric trajectory may require shorter trip time or smaller pro-
pulsion requirements. The second approach requires that the heliocentric trajectory be
specified, including the velocity boundary conditions. Therefore, the high-thrust
energy requirement is reduced, a factor which may decrease initial orbital mass
and/or equivalently increase arrival payload. This second approach was chosen as
the method to be used in this study since it is convenient to specify an optimal
heliocentric low-thrust trajectory and then incorporate the effect of the
planetocentric departure/capture operation into the specific mission analysis. The
inclusion of the high-low-thrust planetocentric operation into interplanetary
low-thrust mission analysis creates a more sophisticated model of the sequence of
events than is generally the case, and hence, its predictions are more representative
of the actual mission modes under examination.

Study Approach

Since the planetary parking orbit and the planetocentric activity sphere are
known for any planet under consideration, the planetocentric thrusting trajectory
is calculated by an incremental integration of the first integrals of the vehicle
equation of motion in differential form (Appendix B). High-thrust termination is
reached when the desired high-thrust hyperbolic excess speed is acquired by the
vehicle. At this time, a discontinuity in vehicle thrust acceleration and specific
impulse is experienced (low-thrust propulsion initiated); although all dependent
variables remain continuous, the independent variable T (the instantaneous burn
time) is set equal to zero. The vehicle's trajectory is calculated until the
planetocentric activity sphere 1s reached.

For mixed-thrust planetocentric operations the following nondimensional
constants are given.

Vo =~ High-Thrust Hyperbolic Excess Speed

8
1

L Initisl Low-Thrust Vehicle Acceleration

C. - Low-Thrust Exhaust Velocity

a
-
1

Initial High-Thrust Vehicle Acceleration
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Cy - High-Thrust Exhaust Velocity
[¥ - Radius of Sphere of Influence

These constants are used as input values for the existing computer programs. For the
departure operation, V¥ (the hyperbolic excess speed achieved by the combination

of high- and low-acceleration propulsion systems at arrival at the sphere of influence)
may be an input in place of V“h' If V¥ is an input to the departure program, a
numerical Newton-Raphson technique is employed on the variable Vo, until the
hyperbolic excess speed at the sphere of influence (i.e., V%) is within a desired
tolerance of the input value.

For the capture operation, the computer program chooses an initial value of
the final thrust acceleration ¢zg. A modified Newton-Rephson iterative technique
acts upon the initial thrust acceleration, oy, until oy is within a specified
tolerance of the input value. This iteration technique is employed on both the
high- and low-thrust initial thrust accelerations. However, once the iteration
is complete, the Vﬁ is not pre-assigned; it is a dependent variablée which is
determined by the input vehicle parameters and the specified gravitational field.

With the available programs, the capture and departure trajectories may be
computed for any planetocentric gravitational field (specific sphere-of-influence
radius), initial parking orbit, and combination of high- and low-thrust vehicle
parameters.

The basic assumptions made in the analysis are:

1. The departure (capture) parking orbit is circular and at 1.1 planetary
radii from the gravitational center.

2. The vehicle thrust acceleration is in the direction of the vehicle's
instantaneous velocity.

3. The departure (capture) trajectory is in the plane of the parking orbit.

4. The vehicle propulsive thrust and propulsive specific impulse of both
high- and low-thrust systems are constant.

5. The radius of the planetocentric activity sphere is determined as the
product of the planet's mean orbital heliocentric radius and the ratio
of the planet's mass to the solar mass raised to the 0.4 power.

6. The first propulsion system employed upon departure from the parking
orbit is the high-thrust system; the first propulsion system employed
upon capture is the low-~thrust system.
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7. Immediately upon completion of the high-thrust termination (Low-thrust
termination), low-thrust propulsion (high-thrust propulsion) is employed
until the sphere of influence (parking orbit) is reached for departure
(capture) operations.

8. All variables have been nondimensionalized with respect to the parking
orbit constants, i.e., the eircular orbit speed, Vepo s the circular orbit
radius, rp., and the local gravitational acceleration, gy

Elliptic Parking Orbits

The present formulation of the computer programs for planetary departure
and capture oOperational modes considers the parking orbit to be circular. The
introduction of nonzero eccentricity into the parking orbit poses the problem
that other variables must be introduced intc the problem formulstion. If the
parking orbit is elliptic, the eccentricity, perigee distance, and the true
anomaly must be introduced unless only apsidal departure or capture is considered.
Even with apsidal initiation or termination, the initial boundary conditions must
be completely redefined to include the following three options.

Option 1: Circular parking orbit of radius, 1,

Option 2: Elliptic parking orbit of perigee radius, r,; departure
(capture) at perigee or apogee

Option 3: Elliptic parking orbit of apogee radius, r,; departure
(capture) at perigee or apogee

Hence, from a simplified approach of one set of initial conditions, the programs
must be redefined to handle three basic options with four suboptions.

The labor involved in accomplishing this task seems unwarranted considering
that the basic motivation is to determine the effect of both high and low thrusting
within the planetocentric sphere and not to perform a detailed analysis of all
possible variations and alternatives. The introduction of new variables would tend
to complicate and obscure a basic understanding of the problem.

Discussion of Results

The results of this study are presented in two related discussions. The
first deals with mixed-thrust planetocentric operations about the planets Earth,
Mercury, and Jupiter. Here, a general analysis is made to show the effect of
variations in planetary mass on the pertinent trajectory parameters derived from
the study. The second discussion deals with mixed-thrust Earth operations only.
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Planetocentric Operations

An examination of the departure and capture operational modes for Earth, Mercury,
and Jupiter was made. The first was chosen because it is the most important, the
latter two because they represent the extremes in planetary mass.

The high-thrust propulsion system was chosen to be either a chemical system
(I, = 430 sec) or a solid-core nuclear system (Ig, = 800 sec). The low-thrust
propulsion system is defined by a constant thrust-acceleration level of either 10_8,
10_3, or 107* of the Earth's surface gravitational acceleration (9.79006 x 10™° km/
sece). The initial thrust acceleration of the high-thrust system was chosen to
minimize the weight of the high-thrust stage, using the results of Ref. IV-l. The data
of Ref. IV-1 were approximated as linear functions of hyperbolic excess speed at high-
thrust termination and are presented in Figs. IV~1l and IV-2. Although the planetary
parking orbits used in Ref. IV-1 are different than those assumed here, the values of
initial thrust-to-weight ratio are regarded as typical of the two types of high-
thrust propulsion systems.

The definitive characteristics of the three planets and their parking orbits
are swummarized in Table IV-l. Although the planets may vary considerably in mass,
the local gravitational acceleration at the parking orbit about Mercury is of the
order of 1/3 that for Earth, while that about Jupiter is of the order of 2.5 that
of Earth. The radius of the sphere of influence is 625.48, 131.68, and L0.56 times
the parking orbit radius for Jupiter, Earth, and Mercury, respectively. Since all
operational modes begin (or terminate, for capture) at a nondimensional radius of
1.0, there is considerable increase in thrusting time available for the low-thrust
system when comparing the Jupiter operations with those about Mercury.

The increase in hyperbolic excess speed due to low acceleration within the
sphere of influence of Earth, Mercury, and Jupiter is shown in Figs. IV-3, IV—h,
and IV-5, respectively. For a given hyperbolic excess speed at high-thrust termina-
tion (Ve,), the hyperbolic excess speed at the sphere of influence (V%) is essentially
a function of the low-thrust acceleration only, since negligible dependence on high-
thrust specific impulse was found. The functional form of V¥ appears to be hyperbolic
(quadratic) with respect to Ve, and is asymptotic to a h5-deg line passing through
the origin and representing a limit of no low-thrust operation.

The difference in V¥ for the departure and capture modes is directly proportional
to the low-~thrust acceleration and planetary mass and inversely proportional to Vah.

Although Figs. IV-3 through IV-5 illustrate the added energy at the sphere of
influence due to low-thrust acceleration; these figures also indicate the required
reduction in the energy imparted by the high-thrust system to achieve a given energy
(V_2) at the sphere of influence. As an example, an Earth-escape maneuver using
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mixed high- and low-thrust systems must provide a hyperbolic excess speed of 0.40 EMOS.
From Fig. IV-3, a low-thrust system with an acceleration of 107 g's reduces the
high-thrust V, requirement to 0.395 EMOS, while a low-thrust system providing 1072

g's reduces the high-thrust V_ requirement to 0.375 EMOS. If the "low-thrust"
acceleration is 1072 g's, it can be seen that there is no requirement for a high-
thrust system. In fact, the "low-thrust" system alone will provide a V_ = 0.45 EMOS.
Therefore, the powered time of the "low-thrust" system would have to be reduced to
provide a V,, = 0.40 at the sphere of influence. The other alternative is to use

only a high-thrust system.

Similarly, Fig. IV-4 shows the relative insensitivity of the acceleration level
of the low-thrust system at Mercury as compared to Earth operations. Conversely,
the Jupiter data shown in Fig. IV-5 indicates that the acceleration level of the low-
thrust system is quite critical. For a low-thrust level of 10™* g's, the low-thrust
system alone will provide 0.25 EMOS. Therefore, any mission requiring a V_ > 0.25
would use a high- and low-thrust planetary escape system. Conversely, for V_ require-

ments less than 0.25 EMOS, either a high-thrust system or the low-thrust system would
suffice.

The low-thrust powered time is shown in Figs. IV-6 through IV-9 as a function of
the hyperbolic excess speed provided by the high-thrust system. This powered time is
directly proportional to the planetary mass and inversely proportional to V_ and low-
thrust acceleration. The difference in powered time between the departure and capture
modes 1s directly proportional to planetary mass and low-thrust acceleration and
inversely proportional to th, for values of th less than 4.0. This limiting value
is in nondimensional form as are Figs. IV-6 through IV-9. In this form, the researcher
can use these figures universally. As an example, the abscissa of each figure is
actually V /VCPO, where Veoo is the circular velocity of the planetary parking orbit.
Therefore, the researcher can use the data universally for any size parking orbit he may
be using in his analysis. Likewise, the powered-time parameter, T, can be expressed as

T = t(l’iﬁ.@)
Tro
Where: t = powered time, sec
Vhpo = planetary parking orbit radius, ft/sec or km/sec
Ry = planetary parking orbit radius, ft or km

the powered time of the low-thrust system is then

T r
= PO
t = BEL00 (cho) days
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It appears that the planetary departure and capture low-thrust operating times
are nearly identical in the region where V /Vc = 4.0, For a low parking orbit
about Earth, this is equivalent to about 1.05 Eﬁ&S. Since this velocity is far above
normal values for missions of interest, the above analogy is academic. Likewise, for
Jupiter, a value of V_ /VCPO = 4.0 is equivalent to about 5.4 EMOS., However, for

Mercury, an equivalentHvalue would be about 0.38 EMOS, which corresponds to typical
Mercury missions.

When V%/Vc 0 becomes greater than 4.0, the high-thrust burn time becomes a
significant fraction of the total operational powered time, and, consequently, the
dependence on the high-thrust specific impulse and operational mode becomes pronounced.
From an operational standpoint, it should be noted that most interplanetary hyperbolic
excess speeds are kept below 0.50 EMOS by Jjudicious trajectory selection. Likewise,
when considering mixed-thrust systems, the V., delegated to the high-thrust system by
various optimization techniques seldom exceeds 0.3 EMOS.

Figures IV-10 and IV-1l display vehicle flight path angle at the sphere of influence
a8 a function of hyperbolic excess speed and high-thrust burnout. Above a V°°H of 0.2
EMOS the dependence on low-thrust acceleration and operational mode rapidly becomes
negligible. Below this value the flight path angle is directly proportional to low-
thrust acceleration and is slightly larger for the capture mode as compared to the
departure operational mode. For the three planets examined, the flight path angle
remains reasonably constant for th greater than 0.2 EMOS and maintains a value above
88 deg. Therefore, the approximation that the vehicle velocity is radially oriented
upon reaching the sphere of influence is wvalid (th = 0.2 EMOS).

To summarize the above statements for the general discussion of high- and low-
thrust planetocentric operations, the following conclusions are made:

1. The hyperbolic excess speed attained by the vehicle at the planetocentric
sphere of influence, V¥ , is a function of the low-thrust acceleration and
the hyperbolic excess speed at high-thrust burnout, V“k’ only; high-thrust

specific impulse does not appreciably affect the augmentation of hyperbolic
excess speed.

2. The functional form of V¥ is hyperbolic (in a quadratic sense) and is
asymptotic to the limiting case of no low-thrust operation as hyperbolic
excess speeds at high-thrust burnout become large.

3. VgJth is directly proportional to low-thrust acceleration and planetary
mass and inversely proportional to V“M'

k. The difference in V¥ for the capture and departure modes is directly

proportional to low-thrust acceleration and planetary mass and inversely
proportional to th.

Iv-7



F-910352-13

5. An arbitrary choice of vehicle parameters cannot be made if a specific
V¥ is to result from a designated th

6. Low-thrust powered time is directly proportional to planetary mass and
inversely proportional to low-thrust acceleration and V

T. The difference in low-thrust operating time between capture and departure
operational modes is directly proportional to low-thrust acceleration
and planetary mass. This difference is inversely proportional to V_ /V

until Vo/V  exceeds a value of 4.0; above this value the dependence bec%mes
direct. °°

8. Vehicle flight path angle at the activity sphere is directly proportional
to low-thrust acceleration and slightly larger for the capture mode, as
compared with the departure mode, for V_, less than 0.2 EMOS. Above this
value the flight path angle remains essentlally constant and is a slight
function of high-thrust specific impulse.

9. For a value of V_ greater than 0.2 EMOS the vehicle flight path angle
is greater than 88 deg, thereby implying that the assumption of radial
velocity direction at the activity sphere i1s wvalid.

Farth Operations

An examination of the departure and capture operational modes for the planet
Farth was made. The data of this part of the study are more detailed inasmuch as a
larger range of initial low-thrust accelerations is examined and the low-thrust
propulsion system is now characterized by constant thrust and constant specific
impulse.

The high-thrust propulsion system was chosen to be either a chemical system
(I¢p = 430 sec) or a solid-core nuclear system (I,, = 800 sec). The low-thrust
system was defined by a range of specific impulses from 2000 sec to 10,000 sec.
The initial thrust acceleration of the low-thrust stage was either 1077, 10—3,
107%, or 107° of the Earth's surface gravitational acceleration. The radius of
the Earth's activity sphere is 131.68 Earth parking orbit radii. The parking orbit
has a radius of 1.1 times the radius of the Earth. The fundamental constants of
the problem are found in Table IV-I. The basic assumptions which formulate the
planetocentric mixed-thrust model are found in the 'Study Approach'.

The increase in hyperbolic excess speed due to low-thrust operation within the
Earth's activity sphere can be obtained from Figs. IV-12 to IV-1Lk., For a given hyper-
bolic excess speed with high thrust only, VOO , the hyperbolic excess speed at the
sphere of influence, V¥, is a strong functioft of the low-thrust initial acceleration

|

Iv-8
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and a weak function of the low-thrust specific impulse. There is no dependence on
the high-thrust specific impulse in the examined range. The functional form of V¥
appears to be hyperbolic (quadratic) with respect to Ve, and is asymptotic to a 45-
deg line commencing at the origin (i.e., the limiting case of no low-thrust propulsion).
For both Earth departure and capture, once the low-thrust initial acceleration is less
than 10°° times the Earth surface gravitational geceleration, the effect of low-thrust
specific impulse on V¥ becomes negligible. Figure IV-1T7 displays an enlarged view

of Figs. IV-12 and IV-13 to 0.30 EMOS. The curve showing 10"° for initial low-thrust
accelergtion may be taken as equivalent to no low-thrust operation since, when V

has the value 0.0182 EMOS, V¥ has the value 0.0187 EMOS, and when Ve has the value
0.3005, V¥ has the value 0.3005.

Low-thrust operating time as a function of hyperbolic excess speed at high-thrust
burnout is shown in Figs. IV-15 to IV-18. Low-thrust operating time is inversely
proportional to th and initial low thrust-acceleration and directly proportional to
the low-thrust specific impulse. When the low-thrust initial acceleration is less
than 10'3, there is no effect of low-thrust specific impulse on the low-thrust operating
time for either the capture or departure operational mode.

Figures IV-19 and IV-20 display high-thrust characteristic speeds for Earth
departure/capture and for both chemical and solid-core nuclear propulsion systems.
These characteristic speeds include the effect of 'gravity loss’ due to the finite
thrusting time of the high-thrust propulsion system and are calculated in the manner
of Ref. IV-2. As would be expected, the characteristic speed of the solid-core nuclear
system is greater than that of the chemical system for a given hyperbolic excess speed
at high-thrust termination, since characteristic speed increases with increasing
specific impulse (increase in thrusting time).

The difference between the vehicle's instantaneous path speed, V¥, and its
hyperbolic excess speed, V%, at the sphere of influence is presented in Figs. IV-21
and IV-22. When the low-thrust initial acceleration is less than 10°° times the
Earth's surface gravitational acceleration, there is no effect on this difference due
to low~thrust specific impulse.

For a hyperbolic excess speed at the end of high~thrust operation of 1.0 EMOS,
V¥-V% 1s of the order of one-fortieth of one percent of the nominal heliocentric speed
of any of the initial low-thrust accelerations examined. When the hyperbolic excess
speed at high-thrust termination is zero (parabolic conditions), this difference with
respect to nominal heliocentric speed ranges from about one-tenth of one percent to
about 2.7% for initial low-thrust accelerations of 1072 to 10°°, respectively.

IvV-9
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TABLE IV-I

PHYSTICAL PARAMETERS OF PLANETS

Planet
Parameter Barth Mercury Jupiter
Planetary Radius, km 6.37839 x 10° 2.50 x 10° 6.988 x 10*
Parking Orbit Radius (1.1 x
Planetary Radius, km) 7.01623 x 10° 2.750 x 10° 7.6868 x 10*
Parking Orbit Altitude, km 6.3784 x 10° 2.50 x 10° 6.988 x 10°
Radius of Aectivity Sphere
(Parking Orbit Radii) 131.68185 40.55530 625.477
Parking Orbit Circular Speed,
km/sec 7.53713 2.80580 L. 5666k
Local Gravitational Constant at
Parking Orbit, g 0.826L45 0.29220 2.18516
Multiplicative Time Conversion,
days 1.07742 x 1077 1.13439 x 107  2.19311 x 107°

Iv-11
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FIG. I —13

HIGH-LOW THRUST PLANETOCENTRIC OPERATIONS

HYPERBOLIC EXCESS SPEED WITH HIGH AND LOW THRUST, Vag' ~ EMOS

HYPERBOLIC EXCESS SPEEDS ATTAINED WITH HIGH- AND
LOW-THRUST PROPULSION WITHIN SPHERE OF INFLUENCE

EARTH

CAPTURE

.2
1.0 //
0.8 5
(T/M; LOW-THRUST
0.6
. 7~
10-2 /
_____/ -~
‘/
— - -
0.4 4
HIGH-THRUST I : 430 - 800 SEC
i0-3 o | OW =THRUST ISP: 2000 SEC
0.2 —— LOW -THRUST TIge : 10,000 SEC —
= IO'4
10-8
0 ]
0 0.2 04 0.6 0.8 1.0
HYPERBOLIC EXCESS SPEED WITH ONLY HIGH THRUST, VUJHN EMOS



F—910352-13

FIG. TV — 14
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FIG. ™ —i9
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SECTION V
LOW-THRUST PLANETCCENTRIC SPIRAL

The purpose of the planetocentric low-thrust analysis is to develop an insight
into the low-thrust system parameters for departure from or capture onto a circular
parking orbit. The gogl is to combine the planetocentric spirals with the helio-
centric trajectory so procedures may be developed to optimize a single propulsion
system which is to operate successively in both gravity fields. The general ap-
proach is based on the work of Perkins (Ref, V-1) and Edelbaum (Ref. V-2).

In review, two linear forms of the equations relating the nondimensional
velocity parameter and the mass parameter were found for the planetary low~thrust
spiral involving departure from or capture onto a circular parking orbit with a
specified hyperbolic velocity at, respectively, the terminal or initial points.
These linear equations, once translated into vehicle system and trajectory terms,
relate the burnout mass fraction required to accommodate a given hyperbolic velocity
for a specified initial thrust-to-mass ratio, circular parking orbit, and planet.
The equations are simple and straightforward and require, at most, an elementary
iteration for mass fraction (See Appendix C).

The foregoing approach is limited by two aspects: the magnitude of the
circular and hyperbolic velocities imposed by the linearization of the dimension-
less equations, and the fact that the vehicle does not necessarily attain the
specified hyperbolic velocity at the sphere of influence. It is the purpose of
the following to discuss in detail the implications of the above two aspects.
Comparisons are made between the present method and exact numerical results for
payload mass fractions and thrusting times (planet-centered only). The utility of
the method is shown for planetocentric payload optimization under various hyper-
bolic velocities to be achieved by a low-thrust spiral departure from Earth.
Justification for neglecting the sphere of influence approach and position offset
for combining planetocentric and heliocentric phases is developed in Section VI,
Calculation of Interplanetary Trajectories in the Vicinity of the Planets. These
latest results are used in the study of a single propulsion system performing
parking orbit-to-parking orbit missions. In this case the transition point, as it
influences the vehicle, between the planetocentric and heliocentric phases is taken
into account.

Summary of Mass Ratio Equations

For convenience, the mass ratio equations derived in Refs. V-1 and V-2 (and
given in Appendix C) are summarized below. It should be remembered that these
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equations apply only to a planet-centered spiral and do not include the effects of
other perturbing bodies. The equations for thrusting time and payload ratio are
also presented.

Circular Orbit to Escape Velocity

/4
- exp{ [1 -0.805 C//";‘;a) ( rr:; )'/4 ]}

The term m: is the initisl mass on the circular orbit, Vy 1s the circular
speed, C is the jet exhaust speed, and m; is the mass at escape; F/me is the initial
thrust-to-weight ratio, g is the planet's gravitational parameter, and R is the
radius of the circular orbit.

33

Circular Orbit to Hyperbolic Velocity

1/4 /4
Mg {XH_ Ve [ F/mg M¢ }
my - Pl Yoo L "746(#/%2) (mg)

The term mc/mE is found from the previous equation (circular orbit to escape
velocity). The asymptotic (hyperbolic) velocity, Vy, must not be zero; this re-
striction is a consequence of combining the linear dimensionless equations for the
two modes: circular-to-escape and escape-to-hyperbolic., Note that setting Vy = O
in the above equation does not yield the proper mass ratio which is given by the
previous equation (circular orbit to escape).

Escape Velocity to Circular Orbit

me _ {.Y_c__[ _ F/mg '/4]}
me = exp{ ¢ xo.sos(#/Rcz)

F/m; is the initial thrust-to-mass ratio; i.e., the value at initiation of the
planetocentric phase where the vehicle is at local escape velocity.

Hyperbolic Velocity to Circular Orbit

\/4 /4

-——'ex {———+1—[i-¢.74e(£;‘21§)( ) ]} V, #0

The terms my and F/mw are, respectively, the mass and thrust-to-mass ratio at the
initiation of planetocentric phase when the vehicle is at the specified asymptotic
velocity, Vy. The ratio mH/mE is given by

T oo [ - 0 ) ()"
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This is the mass ratio required to decelerate from an asymptotic velocity to local
escape velocity,

Limitations on Velocity

Because 1t is assumed that the dimensionless parametric equations are linear
(See Appendix A), a region of validity can be described which actually places a

limitation on the circular and hyperbolic velocities depending on the system
parameters. Thus for:

F V4 me\/4
circular-to~-escape; Ve 2 LB(*‘ET‘) (Tﬁ9>
c E
- F /4.
escape~to-hyperbolic; Vi, 2 195 Oi___)
. - m
E
R /4
escape-to~circular; V. > IB( Ji?
c= P\ mg
!
hyperbolic-to-escape; V. > '95( Ji_)ﬁYlﬂH y/4
H= TP e £

The foregoing limitations correspond to an allowasble error of about 5% between
the linear and actual forms of the dimensionless parametric equations. As can be
seen, the lower limits on the velocities depend primarily on the initial thrust-to-
welght ratios. The importance of this dependence is pointed out later,

Time and Payload Ratio

The time, T, spent in thrusting during the low-thrust spiral (departure or
capture) is the time necessary to expend the propellant so that the burnout mass
fraction (as required by the foregoing equations) is achieved. It remasins to
specify the initial thrust-to~weight ratio and specific impulse or, equivalently,
the powerplant-to-gross mass fraction and exhaust velocity.

(%—p,)
Hw

Ty
Tz X
2

CZ
77

where C is the exhaust velocity, w, the powerplant mass fraction, T the thruster
efficiency, and o the powerplant specific mass. The final mass fraction, u,, is
the reciprocal of the mass ratio obtalned from the appropriate mass ratio equations
listed above,

Note that the initial thrust-to-mass ratio, in terms of the vehicle system
parameters, 1s given by
(F) . 2mew

m/; a,,C

V-3
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This notation is preferred in the present analysis because of the importance of
thruster efficiency and the dependence of efficiency on exhaust velocity. These
considerations are also intimately related to the payload fraction for the planeto-
centric phase, the heliocentric phase, or both combined.

Regardless of which operational phase is considered, the most inclusive
definition of payload fraction accounts for the mass of the propellant tanks, the
thrusters, the tie-in structure, and the power source (including power conversion
equipment). The payload fraction ., is thus

C (i4a) ar (0
;,LL-I——IO—(I—IJ.I)—(|+O')[I+ Ty ]/‘LW

where o (C) is the ratio of the thruster mass to input power (a function of C),

and p is the tank propellant mass fraction (assumed constant) defined as the ratio
of propellant mass to the mass of the propellant plus tanks. The tie-in and miscel-
laneous structure is represented by the proportionality constant, o, which, when
multiplied by the mass of the other inert hardware, yields the structure. It can
be seen that the payload is a function of C and u,, the two parameters which must
be optimally chosen to maximize . for a given thrusting phase (planetocentric,
heliocentric, or both).

If the mass of the propellant tanks is to be ignored, then p —» 1. Additionally,
if the thruster mass is assumed constant, rather than a function of exhaust velocity,
it may be included as a part of the powerplant by redefining ¢ . For the special
case where the propellant tanks and structure are negligible and the thrusters are
either part of the powerplant or simply ignored, the payload fraction simplifies

to
T ot B ™

This definition was used in the payload fraction calculation presented below.

Comparison of Analytical and Numerical Results

The following presents the results of a brief study performed to investigate
the accuracy of the approximate mass ratio equations. Two overall comparisons
are made: one for departure from a circular orbit to varying hyperbolic velocities
(including zero) and the other for departure from a circular orbit to escape
velocity for varying powerplant mass fractions. The two approaches are employed
in order to check the validity of the equations for the overall problems of circular
orbit=to=-hyperbolic velocity and for the special case of departure to only escape
velocity. In the latter case another analytical method, previously discussed in
the literature, is also studied.
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Circular Orbit to Hyperbolic Velocity

The basis of comparison for this mode of operation is the work of Moeckel
(Ref. V-3) published in 1959 by NASA, Lewis Resegrch Center. Precisely the same
thrusting program (constant, tangential) as assumed in the current study was used
and applied to both outward (departure) and inward (capture) paths. Trajectory
data are presented in Ref. V-3 for a range of thrust-to-weight ratios from 10 to
107™* and a range of exhgust velocities from those attainable by chemical rockets

to infinity. Departure from or capbure onto a circular parking orbit is assumed.

The approximate mass ratio equations in this report were applied to the case
of departure from a l.l-radii circular parking orbit about Earth to hyperbolic
velocities ranging from zero to about 1.6 times initial circular velocity. Two
initial thrust accelerations were used, l.O"4 and J_O"2 go (g0 = acceleration of
gravity at the parking orbit); for each thrust acceleration an exhaust velocity of
5 and 3 times circular velocity was assumed. The parameter used for comparisons
is Moeckel's nondimensional time, T, defined as the circular velocity times time
divided by the orbit radius.

The results are depicted in the following table using Moeckel's nondimensional
notation. It should be noted that Moeckel's results are presented on logarithmic
graphs, thereby limiting the accuracy with which his results may be read, although
it is sufficient for comparison purposes.

COMPARISON OF TIME PARAMETERS BETWEEN APPROXIMATE ( PERKINS/

EDELBAUM) AND EXACT (MOECKEL) METHODS; OUTWARD PATHS

Initial Acceleration = 10™*g Tnitial Acceleration = 10 -go
Square of local Vv, =5 vy =3 Vy =5 Vy =3
Hyperbolic Velocity Time Parameter, T Time Parameter, T
Vﬁ Approx Exact¥ Approx Exact¥ Approx Exact¥* Approx Exact¥
0 8368 8400 7873 7900 68.43 68.4 64,76  64.8
0.1 10,140 10,100 9067  9Lk0O 69.08 T7.0 64,76 T2.5
0.2 11,170 11,200 9961 10,200 80.22 85.0 .81  T79.0
0.3 11,940 11,900 10,620 10,800 88.58 91.0 82.23 8h4.5
0.k 12,580 12,600 11,160 11,200 95.k9 97,0 88.30 89.8
0.5 13,1k0 13,100 11,670 11,600 101L.5 102 93.50 94.8
1.0 15,240 15,200 13,330 13,300 12k.2 12k 112.7 113
1.5 16,760 16,800 1h,540 1k,600 140.7 14O 126.2 126
2.0 18,000 18,000 15,480 15,700 15k.0 154 136.9 137
2.5 19,050 19,000 16,270 16,300 165.% 165 5.7 146
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% = Read from Figs. 3a and 3c, Ref. V-3

go = acceleration of gravity at initial circular orbit

Vy; = exhaust velocity/circular velocity of initial orbit

Vy, = hyperbolic velocity/circular velocity of initial orbit

T = circular velocity x time/initial orbit radius, nondimensional time

In general the lower the initial thrust acceleration the closer the agreement
for all hyperbolic velocities, with the exhaust wvelocity having a secondary effect.
This is a fortunate set of 01rcumstances since, in a ;Tactlcal sense, the thrust
accelerations are not expected to be greater than 10 go and the operating exhaust
velocities should be not less than 3 times the circular velocity. Consequently,
is is expected that, regardless of the hyperbolic velocities to be achieved by
the electric propulsion system, the approximate mass equations used herein are
sufficiently accurate for mission analysis purposes.

It should be noted also that, regardless of the thrust acceleration and
exhaust velocity, the higher the hyperbolic velocity the closer the agreement
between the two methods. This result is as expected from the derivation of the
approximate mass ratio equations.

An example of the limitation on hyperbolic velocity discussed previously
is shown in the table for the initial acceleration of 10~2gb. For the zero-
hyperbolic velocity case the agreement 1s very close, becuase a mass ratio
equation is available for this special case of escape. To obtain a mass equation
for the nonzero-hyperbolic velocity case, two linear dimensionless equations must
be combined, thereby giving rise to the restriction on hyperbolic velocity. It
is expected that for hyperbolic velocities near zero the error would be large
since this range of velocities falls near the nonlinear form of the original
dimensionless parameteric equations. This fact is shown clearly in the table for
Vi = 0.1, 0.2, 0.3 and an initial thrust acceleration of 10 0«

Circular Orbit to Escape Velocity

In this comparison, the analytical technique developed by Melbourne (Ref. V-L)
was applied to the operation of departing from a 1.1 Earth radii parking orbit to
escape velocity. Constant, tangentially applied thrust is again the basic thrusting
program. The Melbourne mass ratio equation is employed complete with the empirically
derived correction factor on thrusting time. To facilitate the computation, a
curve fit was employed for the correction factor, rather than the graph (Fig. 25
pP. 59, Ref. V-k),

Particular system parameters chosen were an exhaust velocity, C, of 30 km/sec
and a powerplant specific mass of 20 kg/kw. The thruster efficiency was taken
to vary with exhaust velocity according to 1/[1+(20/C)°]. The payload fraction



F-910352~13

(simplified definition) and thrusting time were computed for powerplant mass
fractions ranging from 0.1 to 1.0.

The following table displays the results and indicates the closeness of the
two methods. The advantage of the approximate method is the absence of a correction
factor for time, although a simple iteration is required on the mass ratio. Either
method, however, can be easily employed; the Perkins/Edelbaum formulation is pre-
ferred because of the relationship to the hyperbolic velocity equations.

TIME TO REACH ESCAPE FROM 1.1 EARTH RADITI PARKING ORBIT

Exhaust Velocity, C = 30 km/sec
Thrustor Efficiency = 1/[1+(20/C)?]
Powerplant Specific Mass = 20 kg/kw

]

Powerplant Mass Perkins /Edelbaum Melbourne
Fraction Payload Fraction Time, Days Payload Fraction Time, Days
0.1 0.6900 316.0 0.6903 315.6
0.2 0.5923 156.0 0.5926 156.0
0.3 0.4938 103.4 0.49k2 103.2
0.k 0.3950 T7.13 0.395k4 76 .90
0.5 0.2959 61.4k2 0.2964 61.25
0.6 0.1967 50.98 0.1973 50.83
0.7 0,097k 43,54 0.0981 43 .40
0.8 -0.0019 37.98 -0.0013 37.85
0.9 -0.1013 33.66 -0.1006 33.54
1.0 -0.2008 30.22 -0.2000 30.10

Influence of Propulsion Systems Parameters

To develop insight into the importance of exhgust velocity and powerplant
mass fraction, the variation of the planetocentric payload-to-gross mass fraction
was computed for departure from a circular Earth parking orbit to hyperbolic
excess speeds of zero, 2.0, and 4,5 km/sec. The problems of thrusting through
the sphere of influence and into heliocentric space are neglected; the analysis
applies only to the planet. Actually, the objective of this computation is
two-fold: the first is to understand the behavior of the planetocentric payload
fraction for varying system and trajectory parameters, and the second is to
relate the planetocentric departure and capture phases to the heliocentric

V-7
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transfer wherein one propulsion system is utilized for the entire mission. The
latter objective is important since the ultimate goal of the low-thrust spiral

analyses is to combine the planetocentric and heliocentric flight profiles for

maximizing the overall payload fraction.

The low-thrust vehicle is assumed to start in a 1.1 Earth radii parking
orbit with a powerplant specific mass fixed at 20 kg/kw. An assumed variation of
thruster efficiency with exhaust velocity was utilized, and the payload is simply
defined as the difference between the burnout mass fraction and the powerplant
mass fraction. The approximate (Perkins/Edelbaum) mass ratio equations were
employed. The final results for payload fraction and thrusting time are dis-
played in Figs. V-1 to V-6 which include two figures for each of the three
hyperbolic velocities.

Several observations may be made with the ald of these figures. It can be
seen from Figs. V-1, V-3, and V-5 that, if the mission objective is to deliver a
payload to a given hyperbolic velocity, there are optimal choices for C and uy
depending on the desired (or required) thrusting time. Further, under a given
set of dynamic and system conditions (excluding C and Wy ), there is an absolute
minimum time for which optimal C and uy yield zero payload. This can be seen in
Fig. V-1 wherein the minimum time is about 35 days for C = 20 km/sec and wy = 0.71.
Also for times greater than the minimum, there are two sets of (nonoptimal)
values for the pair (CJ Wy ) which produce zero payload. For times less than the
minimum the payload is negative regardless of the values for C and yy.

Therefore, one would expect that, given a thrusting time, the values for both
C and py must have co-related upper and lower bounds; i.e., the values at which
payload is zero. This is true for C but not for py. Taking the 50-day case in
Fig. V-1, C must be between about 12 and 60 km/sec; for these limits py must be
0.54% and 0.89, respectively. However, note that py could be decreased (with a
corresponding increase in C and p. ) to almost 0.51, which is the minimum w, for
that thrusting time. This effect can be noticed for longer thrusting times.

Besides providing higher payload fractions, the increased thrusting times
cause the payload fractions to become less sensitive to changes in C and py about
their optimal values. This effect is most noticeable in Fig. V-1 and becomes
less as the hyperbolic velocity increases, Fig. V-3. Thus if the desired thrusting
time is 100 days for a departure to escape velocity, the exhaust velocity can
range between 20 and 50 km/sec and the corresponding powerplant fraction between
0.27 and 0.43; this results in a payload fraction decrease of not more than 10%.

If the vehicle is to achieve 2.0 km/sec hyperbolic speed within 100 days, the
exhaust velocity can range between 20 and 40 km/sec and the corresponding power-
plant fraction between 0.31 and O.hT‘for a payload decrease not exceeding 10%.

V-8
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A summary of the payload fraction data is shown in Fig. V-7, wherein the
maximum payload fraction is plotted against hyperbolic velocity. In this plot,
the minimum time for zero payload is clearly indicated at given hyperbolic

velocities. The absolute minimum time for zero payload and zero hyperbolic velocity
is about 34.5 days.

In the evaluation of candidate power systems, the problem arises as to what
values of C and u, should be employed to maximize the corresponding payload mass
(not fraction) for a fixed time. The characteristics usually associated with a
certain class of powerplant are its power rating and specific mass or, equi-
velently, its mass. Given the mass of the powerplant, my, the corresponding

payload, m is given by "
_ L
M= mw( Hw >

Hence the appropriate cholces for C and y, should be those that maximize the ratio
ML/Uwi this is true in general, regardless of the definition for payload fraction.
If the simplified definition for payload fraction were employed, then the ratio

ul/uw should be maximized. A numerical example of this fixed-mass powerplant
problem is given in the accompanying table.

MAXTIMIZATION OF PAYLOAD FOR FIXED POWERPLANT MASS

Circular to Escape Velocity
Powerplant Specific Mass = 20 kg /kw
Parking Orbit = 1.1 Earth radii

C, km/sec P M B /by
10 0.22 0.289 0.761
15 0.37 0.270 1.37
20 0.4k 0.270 1.63
30 0.48 0.310 1.55
30% 0.49 0.320% 1.53
Lo 0.48 0.362 1.33
60 0.39 0.500 0.780
80 0.28 0.640 0.437

¥ Optimal for maximum payload fraction
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In this case, for a powerplant having a specific mass of 20 kg/kw (the data were
generated for this specific mass) and a given mass or power rating, the optimum
value for C is about 20 km/sec and for py about 0.27. For the simplified payload
fraction definition the vehicle can deliver a payload whose mass is 1.63 times
that of the powerplant. Note that the optimum values for C and p, are quite dif-
ferent from those for maximum payload fraction. Furthermore, for other hyperbolic
speeds and at a glven thrusting time, it can be seen that the optimum w, does not
necessarily correspond to its minimum value. An important side effect is that

the initial vehicle mass becomes high since payload is maximized with respect to
the powerplant mass.

For the case of applying a given thruster capable of a fixed specific
impulse, the problem is to either fix a W, and accept the resulting time or fix
the time and accept the py. Fixing either py or T is somewhat arbitrary unless
there are auxiliary system constraints which would perforce determine either
parameter. An alternative approach would be to seek the value of y, which
maximizes the ratio uL/T for the given exhaust velocity (specific impulse). An
example of this technique is given in Fig. V-8, wherein a 30 km/sec exhaust
velocity was assumed for the thruster operating under the conditions given in
Fig. V-1. For this case, a py of 0.4 maximizes uL/T resulting in a time of about
78 days (Fig. V-2). The corresponding payload fraction is 0.k,

It is no coincidence that the optimum value of uy equals the corresponding
payload fraction, This fact can be shown by forming the ratio uL/T and dif-
ferentiating with respect to Wy . The resulting equation for optimum p, is

am

|- -2 =0
Tiey, ) ey = 2y

Fgt =1,
This is a nonlinear equation in py wherein p, is a function of py. A simpli-
fication can be employed by using the sample results of Fig. V-9. Note that
the burnout mass fraction, iy, is essentially independent of y, for practical
thrusting times. Consequently, as a first approximation, dul/dpw ~ 0, and the
above equation yields Uyopy = u1/2. Putting this result into the simplified
payload fraction definition, p. = Wy = uy, produces . = Uy at maximum uL/T.

Consequently, to obtain a first guess of the optimal value for p,; at any
C, a line joining equal values of p_ and p, could be overlaid on the plots of
Figs. V-1, V-3, and V-5. The corresponding times then can be found from Figs. V-2,
V-4, and V-6. Alternatively, a line connecting the optimal p, for a given C can
be placed on the plots of Figs. V-2, V-4, and V-6.

The fact that dul/dpw is approximately zero produces another interesting

aspect; namely the slope of the W, vs g curves should be about -1 for any C
(simplified payload definition). This feature is shown in Fig. V-10 for a Mars

V-10
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spiral to escape velocity. A plot of the data on linear coordinates shows that
the constant C lines have a slope of approximately -l. Furthermore, the curve
of maximum payload fraction is seen to be almost linear (dotted line). In this
example case, for times varying between 20 and 100 days, the optimum value of C
ranges between 23 and 35 km/sec respectively.

The line of optimum py for maximum uL/T is indicated by the solid line of
slope +1, The corresponding times are given in Fig. V-11. Note that under the
condition of maximum m_/T, there exists a unique minimum time; in Fig. V-1l it is
about 27.5 days, occurring at a C of about 25 km/sec and a uy of about 0.L45.

This is the point at which the maximum uL/T line intersects the maximum . line
in Fig. V-10. Furthermore this point is the highest maximum value that w. /T can
achieve if C 1s unrestricted.

Conbined Planetocentric and Heliocentric Missions

The major restriction associated with the mass ratio equations employed pre-
viously is the fact that thrusting may continue well outside the planet's sphere
of influence and into the heliocentric field. Accordingly, the performance
computations will be in error. This problem is circumvented by employing the
concept of "matched asymptotic expansions' which is discussed in detail in the
low-thrust spiral portion of Section VI, Calculation of Interplanetary Tra-
Jectories in the Vicinity of the Planets. No sphere of influence definition is
necessary, and the position offset with respect to the planet is ignored.

From the latest results of trajectory studies described in Section VI, the
corresponding mass ratio equations for the low-thrust planetocentric trajectory
are as follows:

m v F/m t/zm /4
. Me | < [1- 184St ) (e 1}
Departure: | M exp { c ! "Bq(p/Rc ) mm>
Vv F/Mm \/4
Capture: Mm _ { —9-[_ —n }}
me = exp { o |l |.84(#/Rcz)

where m, is considered to be the mass of the vehicle at the initiation or
termination of the planetocentric phase; i.e., at the matching point. The
initial thrust accelerations for departure and capture are F/m; and F/mm,
respectively. This formulation is used to agree with the computational model
discussed below. The above equations imply that the boundary conditions for the
heliocentric trajectory are the planet's heliocentric position and velocity; this
latter condition corresponds to zero velocity relative to the planet.

V-11
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In the mass ratio equation for thrusting between a circular orbit and a
hyperbolic velocity, Vy, the constant previously employed was 1.746 based on the
original work by Perkins and Edelbaum. Iater refined analysis indicated that the
constant should be L.757. Both constants are based on tangential thrusting. If
optimal steering is utilized the appropriate constant is l.8h, which is used herein.

For thrusting solely in the planet's field, the Vy term appears as indicated
by the appropriate equation in the Summary of Mass Ratio Equations. In the above
mass ratio equation to be used for combining the planetocentric and heliocentric
tra jectories, the hyperbolic speed Vy does not appear. This is because in the
asymptotic matching technique employed here, the hyperbolic velocity is assigned
to the heliocentric trajectory close to the massless planet (see Section VI).

With the foregoing equations and assumptions the problem of analyzing the
combined planetocentric and heliocentric mission becomes straightforward. It is
assumed herein that one propulsion system performs the entire mission from
departure parking orbit to capture parking orbit. The payload is delivered onto
a circular parking orbit about the destination planet in a fixed total time
(parking orbit to parking orbit). The total mission duration consists of the
departure time, the heliocentric transfer time (assumed constant for a given
optimization) and the capture time. The problem is thus to choose C and py and
the corresponding distribution of planetocentric thrusting time which maximizes
the overall payload-to-gross mass fraction for a given total mission duration.

A schematic presentation of this mission profile is given in Sketch A.

T

PLANETOCENTRIC
CAPTURE

g1

PLANETOCENTRIC
DEPARTURE

“ MATCHING POINT"

g HELIOCENTRIC TRANSFER -

Sketch A

Single Electric Propulsion Systems, Parking Orbit to Parking Orbit Mission
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An initisl mass mg is accelerated to the matching point at which time the
mass is myp; this becomes the initial mass for the heliocentric transfer which
The start of the capture phase occurs at the matching
point with mass myy and finally ends on the parking orbit with mass my.. The
payload is m . Note that the fixed value of C and powerplant mass m, is employed

terminates with mass myy.

throughout three different gavity fields,

For the normelized mass fraction

equations to be used it should be pointed out that the powerplant fraction at
the beginning of each thrusting phase is different and determined by the initial

value of yy assigned at the departure point.

The corresponding computation for

burnout mass fraction in each thrusting phase must take this into account.

The relationships between the three thrusting phases amd the three power-

plant fractions are depicted in Sketch B.

Given a Wyp (which actually is the

powerplant fraction w,; to be used in the payload fraction) and a C, the departure
thrusting time, Tp, and terminal (or departure) mass fraction, p,p, may be
computed. Thus the powerplant fraction, pyy, for the heliocentric portion may

be found in addition to the terminal heliocenteic mass fraction pyy. The
planetocentric capture powerplant fraction, Mye, is now obtained and used to
compute the final mass fraction at capture, pj¢, and the capture thrusting time,
Te « The corresponding payload fraction is W = yp Wyu Mic ~Huo (simplified

definition) and the resulting total trip time is T = Tp + Ty + Tc.

(T is not the total

thrusting time since coast periods may occur in the heliocentric transfer).

Tp
INPUT: C, Hwp

Hin

T, = CONSTANT

C
Hwo
/‘LWH = FlD

Sketch B

Fie

HFwe

/C
JR—
/
C
T
C
poo = FwH
wC l"'lH

Relationship Between Depérture, Heliocentric,and Capture Phases
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The middle plot of Sketch B is obtained from the heliocentric trajectory
optimization program with optimum coasts, zero hyperbolic speeds on the boundaries,
and no optimization of C and wyy (since these are specified as part of the overall
problem). The fixed heliocentric trip time, Ty, is the difference between the
Julian dates of departure and arrival. The two planetocentric plots are represented
by the two mass ratio equations given above along with the time equation.

A possible procedure, formulated by a brief study of the affected equations
as depicted by Sketch B, would make use of the fact that the terminal mass fractions
(40, Wan, and Py ) are affected only slightly by changes in the related powerplant
mass fraction. Furthermore, the planetocentric terminal fraction changes slowly
with variations in either the powerplant fraction or time, for a given exhaust velocity.
For a given total trip time, T, the approach is thus to pick a C, guess Tp and compute
Wup. Then Pyw, Wyy, and pye are easily computed. The burnout mass fraction at the
end of capture, W,c, is computed and used to find Tz. In general, T, added to Ty and
Tp will not give the required time, T. An iteration is suggested which involves
solving for a new Tp using the recently computed Tg; i.e., Tp = (T - Ty) - T.. This
value of T, is then compared with the original input value and, if the comparison does
not satisfy a given tolerance, the current value of Tp becomes the new input for
the planetocentric departure calculation and the iteration continues,

At convergence for T, (provided a solution exists for the given C and fixed T)
enocugh information is now available to compute y.. However, this is only for a
selected value of C which, in general, will not yield maximum payload fraction.
Therefore, a search on C is required wherein, for each trial C, the foregoing
iteration for T, must be completed. The above suggested procedure did not reach
the computer programming phase.

For the case of an unmanned probe to be delivered to some terminal heliocentric
position and velocity, no capture phase is required, and the problem degenerates to
a flight profile consisting of a planetocentric (Earth) departure and a heliocentric
transfer to the final boundary. Examples of such a mode would be an inclined 1-AU
heliocentric orbit, a solar probe or planetary flyby, and a solar synchronous orbit.
The corresponding schematic for the two-phase mission is depicted in Sketch C.
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LOW - THRUST EARTH DEPARTURE TO HYPERBOLIC VELOCITY

REQUIRED THRUSTING TIME
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LOW - THRUST EARTH DEPARTURE TO HYPERBOLIC VELOCITY
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SECTION VI

CALCULATION OF INTERPLANETARY TRAJECTORIES IN THE VICINITY OF THE PLANETS

Introduction

The calculation of interplanetary trajectories, either powered or unpowered,
involves the solution of an N-body problem. This N-body problem can be well
approximated as a slightly perturbed two-body problem as long as the space vehicle
is far from any of the planets. However, when the space vehicle passes close to a
planet, the third-body effects become important, and some way of approximating
this three-body problem 1s necessary for routine performance calculations. Two
different methods have been developed for the approximate solution of this problem.
The first of these is the patched conic approximation, while the second is the
method of matched asymptotic expanslons. The simllarity of the words matching and
patching has produced considerable confusion between the two methods, and the
methods are often not as well understood as they should be. The distinctions are
actually quite simple.

In the patched conic approximation, a two-body trajectory is calculated in
the vicinity of the planet untll the sphere of influence is reached. At the sphere
of influence, the position and velocity are used as initial conditions for a
heliocentric two-body trajectory. The patching consists of keeping the position
the same on both sides of the sphere of influence and of vectorially adding the
planet's velocity to the velocity relative to the planet to determine the
heliocentric velocity on the outside of the sphere of influence. The patched
conic method usually neglects all third-body perturbations on both legs of the
trajectory, but the patching of the two conics does simulate many of the lmportant
phenomena in the three-body problem. There is no rigorous theory of the error in
the patched conic approximation, but numerical calculatlons have shown that it is
generally adequate for performance purposes.

The use of the patched conic method for interplanetary trajectories requires
the solution of a multipoint boundary value problem because the positions and
times at which the spheres of influence of both planets are pilerced are not known.
Because the solution of this multipoint boundary value problem is time consuming
even with conic trajectories, the patched conic approximation has not been used
very widely for interplanetary trajectories. The patched coniec approximation may
be used without change for powered low~-thrust trajectories, except that here the
trajectories on either side of the sphere of influence will be powered two-body
trajectories and not unpowered conics.
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The method of approximating the three-body problem that has been more widely
used for calculating interplanetary trajectories 1s the method of matched
asymptotic expansions. This is a systematic perturbation procedure which can be
carried out to various orders of approximation. The basic idea is that the tra-
Jjectory close to the planet is expanded in powers of a small parameter, such as
the mass ratio of the planet to the sun (W). Another expansion is made of the
heliocentric trajectory in the vicinity of the planet, carried out to the same
order of approximation in powers of the same parameter. These two asymptotic
expansions are then matched in a suitable region near the planet, such that both
solutions will give the same answer in this intermediate or "boundary layer"
region. In this way, a composite solution is obtained for the whole problemn,
close to the planet, in the boundary layer region, and far from the planet.

Systematic theories of interplanetary trajectories based on this idea have
been developed for the unpowered case by Breakwell and Perko (Ref. VI-l) and for
the power-limited spiral low-thrust case by Breakwell and Rauch (Ref. VI-2). The
zero=-order term in the Breakwell~Perko theory is an analysls that has been widely
used for performance calculations, for example in the Interplanetary Trajectory
Handbook (Ref. VI-3). The zero-order term consists of calculating a heliocentric
elliptic or hyperbolic trajectory which goes from the center of a massless planet
to the center of another massless planet. This 1s the outer solution. The inner
solution consists of a hyperbola around each of the planets. The outer limit of
this inner solution is the hyperbolic excess velocity at infinity. This hyperbolic
excess velocity at infinity is then matched to the center of the massless planet.
The Breakwell-Perko theory shows that the error in thils approximation is of order
. Thie error is acceptable for most performance calculations and 1s retalned in
the analysis to follow. The Breakwell-Perko theory does carry out the next
approximation to order W with error of ordethg, but thls process requires numer-
ical evaluation of several integrals for each trajectory.

The Breakwe%l-Rauch theory for low~thrust trajectories is carried out through
terms of order P& and uZ with errors on the order of W so that it is compar%ble to
the widely used analysis for high-~thrust trajectories. The term of orderp ¥ is
guite lmportant for all the p}anets and should be included in performance calcu-
lations, The term of order 2 is quite small for the inner planets and has been
neglected in the past. It may be important for trajectories that spiral around
the larger planets. The great advantage of using matched asymptotic expansions
for trajectory calculations is that the solution of the multipoint boundary value
problem is partially carried out in the process of matching, so all that is
necessary to produce a trajectory is a solution of a two-point boundary-value
problem. Also there is no need to define a "sphere of influence" for each planet.
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Powered Phases of High-Thrust Trajectories

The powered flight time for typical high-thrust propulsion systems is so short
campared with a year that high-thrust operations in heliocentric space can usually be
well approximated by impulses. However, these thrusting times are often not too much
shorter than the period of a satellite orbit so that it is necessary to provide
corrections for the characteristic velocity losses of finite-thrust trajectories in
the vicinity of planets. A very simple and accurate theory for this problem has
recently been developed by Howard Robbins (Ref. VI-4). Robbins' theory is a general
one which can be used for multistage operations and for multiple thrusting periods.
The AV for a single, finite-thrust maneuver is given by Robbins in the general
relationship of Eq. (VI-1).

AV = AV + & ['L:—g’ (1- 3sin29)—i-ﬂ

AVpkt?

B (VvI-1)

In this equation, AV is the required impulsive velocity, up is the gravitational
constant of the planet, C (Eq. (VI-2)) is the exhaust velocity, r is the radius at the
initiation of the impulsive thrust, 8 is the angle with the horizontal, A is the primer
vector of Lawden (the adjoint to the velocity vector), t is the thrusting time of

the stage (of initial mass, My) given by Eq. (VI-2), and k is the correction factor
for the second moment of a constant-thrust burn which is given very accurately by

the series in Eq. (VI-3).

- / m,
t=(1-¢8Y°) —Ti (vi-2)
_ 6C [_z2C AV v Ay (VI-3)
K= AV [ AV+C°”‘20] "’EE('C—)“L |920(T:“) R

For injection onto the perigee of an escape hyperbola from the pericenter of a co-
planar ellipse, the following two equations are satisfied:

g =0 (VI-L)

A= m (VI-5)
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and the resulting expression for the AV is given by Eq. (VI-6).

> | Fp
2
AV:[(V2+E‘.E)'/2_V][,+E2.£. ot ]
® Ty o 24 13 2 2pp (VI-6)
Vo + 0

Where ro and Vo, are the pericenter radius and velocity, respectively, at the initiation
of thrust, and V, is the required hyperbolic excess speed.

This equation is based on an optimum steering program. The time may be calculated
from the AV for the impulsive case, thereby eliminating the need for iteration,
because the time is used only in the small correction term and errors in it have a
higher-order effect. Precisely thils same equation may be used for injection from
a hyperbolic approach trajectory into an elliptic orbit at perigee.

It should be noted the Eq. (VI-1) is perfectly general and may be used for
any single-burn maneuver which is optimal in the time-open and angle-open case.
Equation (VI-6) is the generalization to the constant-thrust case of the constant-
acceleration analysis developed by Long in Ref. VI-5.

Low-Thrust Spiral Trajectories

A systematic theory of low-thrust trajectories which start from a cilrcular
orbit around the planet and go into heliocentric space has been developed by Break-
well and Rauch in Ref. VI~2. The basic idea of theilr analysis is illustrated in
Fig. VI-1. At a time t;, the vehicle is assumed to start from rest at the offset
point and to be thrusting in the direction of the asymptote to the spiral trajec-
tory. The heliocentric trajectory 1s then calculated from the offset point at
time t; with the gravity field of the planet assumed nonexistent . For an approach
spiral, the effect of the planet would be to place the vehicle on the spiral at
the point shown at time tl rather than to reach the offset point at the same time.
Thus tl is the point at which the computation of vehicle performance for the
planetocentric portion of the flight ceases for departure or starts for capture.
This point 1s sought by the trajectory analysis so as to make the calculation of
performance agree with the actual trajectory profile. The analysis in Ref. VI-2
is for variable-thrust power-limited trajectories but has been extended to the
constant-acceleration case in unpublished work by Rauch. TFor the constant-
acceleration case with optimal steering, the incremental veloeity required to
reach time ty is given by Eq. (VI-T).

AV, =vc-|.s4(r—nT-l- pp) (VI-7)
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vhere V., is the circular velocity of the parking orbit, T the thrust, and mj the
vehicle mass at point tl.

The constant in this equation is different from the one given earlier in
Ref. VI-6 and 7 because the earlier result was for tangential steering. The
difference in these two constants (1.84 and 1.757) is the difference between
tangential thrusting and optimum steering. The position offset from the center of
the planet contributes a change in propellant consumption to the whole trajectory
of order 2 which is on the order of the square of the velocity correction term in
AV, . This term can be neglected in performance calculatlons for trajectories
around the inner planets.

Equation (VI-T7) may be used without change for constant-thrust trajectories
as well as constant-acceleration trajectories if the mass in the equation is taken
to be the mass at time tl. The reason for this interchangeability 1s that in the
early part of the spiral, AV, i1s completely independent of the specific impulse of
the engine and the (small) magnitude of the thrust acceleration. This is also
true on the latter part of the trajectory when it approaches a straight line. The
only time that the thrust acceleration affects the AV is the relatively short time
around time tq. The valldity of this approximation is borne out by the numerical
results in Ref. VI-8.

Low-Thrust Hyperbolic Trajectories

An approximate analysis for constant-acceleration trajectories with hyperbolic
energy under the influence of low thrust has been developed independently in
Ref. VI-T7 and Ref. VI-9. Both of these references approximate the actual trajec=-
tory by a straight-line trajectory which starts at the center of the planet,
Fig. VI-2. With this approximation, the equagions can be integrated exactly and
the theory developed through the wh and the W2 terms. (W is the ratio of the mass of
the planet to that of the sun.) As in the Breakwell-Rauch theory, the error of this
approximation will be of order u. The effect of the planet is replaced by a velocity
offset and a position offset at the initial (or terminal) time. The required velocity
8V, and position, 8R, offsets are given by Egs. (VI-8) and (VI-9).

T /4
For Vo< 2 (Fpe)

sv=[2v/Z E(K) =/ k(W] (5 #,,)'/4 (VI-8a)
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2
et Vo /M
Where L 8 Tep
2 2
(3V)" - Vg,
and oR = ——% -~ (VI-9a)
m
1/4
For of T ) .
vc:o2 2( m He
1/2 /4
' m Vo? M T
sv = [(( BT + /W0 )" ] (Lo, (VT-8b)
2 4/)@flﬂ_..4
K2 - 4 Tee
Where Vco4 m —/\/Vco4 m o _
2 2
and SR = (3V) TrVCD (VI-9b)
cm

In these equations, K and E are the complete elliptic integrals of the first and
second kind. The velocity offset, &V, is in the direction of the initial heliocentric
thrust direction and is always larger than the initial hyperbolic excess velocity, V.
The difference between these two quantities is shown in Fig. VI-3. The velocity offset,
8V, is thus the total velocity of the vehicle due to the initial hyperbolic excess
speed, V_, plus,that due to the low-thrust system acting within the planet's activity
sphere, (Tup/m)* D. The effect of the planet on the vehicle is obtained through the
velocity correction factor, D, evaluated from Egs. (VI-8a) and (-8b). Note that,
either Eq. (VI-8a) or (-8b) is used depending on whether the value of V_(Tue/m)™™, the
abscissa of Fig. VI-3, is respectively less than, or greater than 2.0. TFor a value
exactly equal to 2.0, both equations yield identical results.

The units depend on the units taken for wp. If the unit of distance is the AU
and the unit of time, T, is the time required for Earth to traverse one radian in its
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orbit, then iy will be A,US/T3 and the resulting velocities are in.AU/T or EMOS

(Earth's mean orbital speed). In these units, Mp i equal to w, the mass ratio of

the planet to the Sun. The position offset is a positive offset in the same direction.
It is quite small and can be neglected for the inner planets.

These equations may once again be used without change for the case of constant
thrust provided the mass is taken to be the initial (or terminal) mass of the vehicle
at the start (or end) of low-thrust operation.

Analysis of Finite Perispsis Radius

The foregoing analysis was based on an approximation that the initial periapsis
radius was zero; that is, the trajectory was assumed to start at the center of the
planet. The following analysis corrects for this and shows the effect of starting
at a finite periapsis radius. The vehicle is assumed to be injected by the high-
thrust rocket onto the periapsis of a hyperbolic orbit. At this point, low-thrust
propulsion is started. The analysis to follow shows that the effect of the finite
periapsis radius is of order W, the ratio of the mass of the planet to that of the
sun. This is a higher-order effect and may be neglected for purposes of performance
analysis, along with the other higher-order terms (also of order u) which were neglected
in the analysis given above.

The effect of the initial periapsis radius is analyzed by considering the
difference in a linear analysis of having an initial eccentricity of unity or an
initial eccentricity corresponding to the actual trajectory which starts at the
parking orbit radius. The acceleration due to thrust is assumed to be constant in
magnitude and to be directed tangentially., Under this perturbation, the linear
theory predicts that the increase in energy of the orbit will be proportional to
the arc length of the hyperbola. Eguations for the radius, time, and arc length
of a hyperbolic orbit are given by the first three equations to follow. In these
equations, the semimajor axis, a, is taken to be positive and H is the hyperbolic
eccentric anomaly. F and E are the incomplete elliptic integrals of the first and
second kind, respectively. The unit of distance is the AU and the unit of time is
the time required for Earth to traverse one radian in its orbit. Thus the gravitational
parameter of the sun is unity and the gravitational parameter of the planet, wp, is
given in terms of this unit solar gravitational parameter. Consequently, in the
expressions following, Wp represents the mass ratio of the planet to the sun.

r =a(e coshH-1) (VI-10)
t= £ (e sinh H -1 (VI-11)
Vm
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2
- ec -l -
s—oe[? F(¢, k) + e sin ¢ cosh H] (VI-12)
Fo V2 I e sinh H
e=l+ 2 k= o sin ¢ =
Ke \/ez+ eZsinh2H - |

What is of interest is the change in time and the change in arc length (due
to the change in periapsis radius) as the vehicle gets far from the origin.
Accordingly, the limits of Egs. (VI-11) and (VI-12) as given by Egs. (VI-13) and
(VI-14) are used.

for H>> 1

t V:Tp [r;a ~ln(2r—;o—>+|n e] (VI-13)
szr+o[| +-e—ze:'—K(('e_) ‘eE(—é‘ﬂ (VI-1k)

The effect of the finite planetary radius will be assumed to be reflected in a
change in the initial hyperbolic excess velocity of the trajectory. In order to
calculate this, consider the difference in hyperbolic excess velocity between a
trajectory with unit eccentricity and the actual trajectory. Eguation (VI-15)
considers the changes due to both the time required to get to a given radius and
the difference in arc length traveled in getting to that same radius.

T T
BV = i N (S=Sexr) = (t-Te) (v1-15)

If the values obtained from Egs. (VI-13) and (VI-14) are substituted into
Eq. (VI-15), the result is Eg. (VI-16) which gives an approximate indication of
the perturbation in initial hyperbolic excess velocity due to a finite periapsis
radius. It should be noted that this perturbation is of order p and will generally
be small enough to be neglected for performance calculations.

SV = _\%? [1 -lne + eze_l K(%) - eE(lE)] (VI-16)

[oo]
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SECTION VII

MASS OPTIMIZATION PROGRAMS

The analysis of low-acceleration propulsion systems usually centers on the
proper selection of exhaust jet velocity (or the specific impulse) and powerplant
mass fraction which together maximize payload fraction for a given flight profile. The
purpose of this discussion is to describe some technigues which were developed
to expedite the analysis of low-acceleration systems operating under constant
thrust with optimum coast. The main features of the procedures are the utili-
zation of computer-developed trajectory data to estimate system ya rameters for
a more refined payload fraction definition and the refinements made in the current
constant-thrust, single-coast, payload optimizastion computer program.

Newly developed, but not thoroughly checked, is the hybrid-thrust mass
optimization program. Because of the limitations on time which were precipitated
by numerical difficulties early in the project, the hybrid-thrust program could
not be applied to as many sample and trial cases as was originally desired.

A discussion of the program is presented below.

In general, the analytical work was based primarily on the work by Melbourne
and Sauver in JPL Space Programs Summary No. 37-17.

Analysis of Payload Fraction Optimization

The simplest definition for payload fraction recognizes that the final
mass fraction, p,, (the ratio of final mass to initial mass) consists of the payload
fraction, W , and powerplant mass fraction, w,. If necessary, inert masses of tanks,
tie-in structure, etc., may be assumed as part of the powerplant. Thus,

T
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The final mass fraction depends on the trajectory being executed, i.e., J, the
efficiency, 7, of the thrustor in converting input power to jet power, the
powerplant specific mass, o, and powerplant mass fraction, Uy - The rocket equation
for power-limited systems is

o
i

_ ayJ
s T 14 o
AN

MW

In the analysis of a given mission, J is usually known and o, is given. The
efficiency depends, generally, on the exhaust velocity and the type of thrustor
employed. For convenience, a hypothetical thrustor efficiency curve of the
following Torm is assumed for all the analyses in this report.

Ty

where 10 < d < 40 km/sec depending on the desired form of the curve, Fig. VII-1.

An electric propulsion system operating at high specific impulse retains
most of its initial mass; thus, variations in the powerplant mass do not
drastically change the final mass or thrust-acceleration profile. Under these
conditions it is assumed that the minimum value of J = I a? dt and the average
thrust acceleration over a minimum-J trajectory do not change with p,. The
use of the geometric mean for the average thrust acceleration is particularly
suited to the purposes here and is employed throughout.

1/2 2
6:(00)|/2=<—‘J—> Cg= ZNEw
o Tp a,Cu

where a, and a, are, respectively, the thrust accelerations at the beginning
and end of the mission and Tp is the powered time.

With the foregoing equations the payload fraction may be maximized. Hence,
the optimum powerplant fraction is given by

) gy (=)
Hwopt ~ |+, /n'C
"2 < 17)
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where 7' = d1)/dC. This equation must be solved iteratively with the foregoing
equations if the efficiency curve is different from that presented above. If,
however, the given form is employed, then closed-form equations for C, py, and
po may be written in terms of only J, Tp, d, and oy . These formulas are
summarized in Table I.

For a given trajectory and mission it is helpful to know the value of
powerplant specific mass which yields zero payload. By setting BLopy = 0, the
maximum o, may be found; the resulting equation is given at the bottom of
Table I.

Because the system parameters of interest are given by simplified
expressions, graphs are easily constructed for C, uy, g1, and pat various
values of 4 and the product JT,. This has been done for values of Ya, JT,, and
d = 10, 20, 30, and 40 km/sec. The graphs are displayed in Figs. VII-2 to -9.
The chart giving the value of o4 at zero payload has been constructed in
nomograph form and is shown in Fig. VII-10.

Use of Charts

The series of graphs is useful for quickly estimating system performance
for constant-thrust operation and under the assumed simplified payload fraction
definition. Since d and o, are usually known, it is necessary to obtain values
for J and T, before using the curves. Two methods are currently available for
estimating J-and T;; one involves the constant-thrust, single-coast computer
program, and the other is based on variable-thrust data.

In the present computer program the constant-thrust J, powered time, and
the corresponding system parameters are computed for given arrival and departure
dates and a series of powerplant specific masses. Both J and Tp change but
slightly with o, and are almost constant at high values of o (> 10 kg/kw);
thus an average J and T, may be used. Gilven the above information the charts
may be used to estimate system performance at different values of d, which may
be interpreted to represent different types of thrustors, and for other values
of oy. In addition the limiting powerplant specific mass for the given mission
may be estimated.

The alternative method of estimating J and T, employs estimates based on
precomputed values which are compared to the variable-thrust J (Jy) and the trip
time, T. These comparisons lead to the ratio K = J/Jy and T = T/T,, which are
bases for estimating J and T, for different missions. Based on the results
detailed in UARL Report F-910352-12, June 1967, for Earth-Mars trips, the best
guess for T is approximately 1.8 to 2.0 while for K it is about 1.2 to 1.4
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Further comparisons are necessary to determine the ranges of K and T for other
missions. Although this latter method of estimating K and T to obtain J and T,
is quite empirical, the major advantage is the relative ease with which variable-
thrust data are obtained for different flight profiles. Trips to Mars, in
particular, have been computed for variable-thrust operation and were given in
Report F-910352-12. The major assumption is that zero hyperbolic excess speeds
are used on the end points of the low-acceleration trajectory.

Improved Payload Definition

An improved definition of payload fraction may be made to account for the
mass of the thrustors, the propellant tanks, the tie-in structure, and miscellaneous
hardware. For this purpose it is convenient to employ the following design
parameters: p, the mass fraction of a loaded tank which is propellant, and o,
the proportionality constant which gives the structure and miscellaneous hardware
mass as a proportion of the total powerplant, thrustor, tank, and propellant
masses. The mass of the thrustors is obtained from the specific mass, &%, which
is the mass per unit of power input to the thrustors. In general, o is a
function of the specific impulse or Jjet exhaust velocity delivered by the thrustor.

The improved definition of payload mass is thus

m =m1-(mw + mp + MWy +ms)

where my = burnout mass
m, = powerplant
mg = thrustor
m; = tank
ms = structure and miscellaneous

Normalizing with respect to initial mass and using the foregoing design para-
meters, the new payload fraction becomes

pL=|—(';J (1-p) - (1 +0) [1+‘3fi§1]#w

VII-4



F-910352-13

which is also summarized in Table II. This is the form that is to be maximized
with respect to exhaust velocity and powerplant mass fraction.

The only new addition, besides the constants o and p, is the thrustor
specific mass as a function of C. An example of the relationships for electron-
bombardment and contact-type thrustors is illustrated in Fig. VII-11 for two levels
of technology. To derive an expression for the empirical data, an analytic
Tit was employed using a sum of two exponentials. The results are tabulated
in Table III. Thus, in principle, the optimum values of C and u, may be determined
for the improved payload definition.

Using the standard procedure and employing the geometric mean for average
thrust acceleration, the optimum powerplant fraction is

p (=) /p
Hw opt” ) I+, 7C I +p,,a.C
[+ 259 [1- (%)) SR

The complete system of equations to be solved is listed in Table IV. Because
of the complicated relationship between o and C, it is not posgible to derive
closed~form expressions for the optimum system parameters. As the equations
stand in Table IV, it is not necessary tc accept the efficiency function given
therein; any relationship could be part of the iteration procedure. The last
equation in Table IV, giving the exhaust velocity, is a consequence of the
average thrust-acceleration (geometric mean) assumption.

An iterative procedure, which appears to work for a few check cases, is
to first pick or guess a value of C (it is assumed that J, Tp, 4, 04, o, and
p are given). A value is assumed for p, and the first two equations between
gy and ug (Table IV) are solved by successive substitution. That is, for the
assumed C, substitute p; to find pyopis substitute this to find p,, etc.,
until y, converges. With this p;, an updated value for C is obtained from
the remaining equation and the entire procedure is repeated. This nested
iteration procedure is time-consuming and may encounter convergence problems.
The solution could be enhanced by employing a "false position" technique or,
preferably, by utilizing a direct-search procedure on an augmented function
which combines the system of equations.

The obvious values for C and py; to use as first guesses are those obtained
from the closed-form equations of the simplified payload fraction analysis. For
the few cases so far analyzed, these initial guesses are close to the answers
and therefore provide excellent starting points.
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Since the foregoing analysis 1s based essentially on the same assumptions used
in the preceding discussion of the simplified payload fraction, the equations of
Table IV may also be solved using J and T, obtained from the computer program
~ (which is based on the simplified system) or from the ratios K and T.

Improvements in Computer Programs

The current single-coast program has been modified to solve the closed-form
equations for the simplified payload fraction as an integral part of the Newton-
Raphson iteration. The form of the efficiency function given above is used
exclusively, and the additional input required is the "efficiency parameter", 4.
This modified program is identified as deck F530.

At the first input value of @& in the program (usually 1 kg/kw), the
corresponding values of J and T, are used to determine the powerplant specific mass
which would yield zero payload. If the next input value of ¢, is less than this
Oy max, the computation continues; if not, the program goes to a new case. This
avoids canputing trajectory and system parameters which, because ¢, is greater than
% pazx lead tO negative or zero payloads. Because of the above two features, no
iterations of the system equations are required, therby eliminating convergence
problems in the powerplant optimization, and unnecessary computations for negative
or zero payloads are avoided.

Further refinements, leading to a separate and more general deck (F487),
incorporate the system equations for both the simplified and improved payload
definitions. This second program contains that part of the foregoing program which
employs the closed-form equations as part of the Newton-Raphson iterations. In
addition, for each ¢, the corresponding J and T, are used in a subroutine which
directly solves the optimization equations for the improved payload definition,
external to the N-R algorithm. The additional inputs necessary are d, 7, p, and the
type of thrustor specific mass relationship that is desired (of the four discussed
previously). This modification includes the foregoing program, since o and p may be
zero and one, respectively, and o may be a constant or zero.

Note that the optimizing equations are solved external to the N-R algorithm and
utilize the J and T, corresponding to the simplified payload definition. A more
accurate solution would require that the equations be solved at each iteration of the
algorithm. However, based on the results showing the accuracy of the basic assumptions
and procedure (as developed by Melbourne and Sauer), it is believed that, by using
machine-computed J's and T;'s, the same approach as applied to the improved-payload
case is at least more than adequate for mission studies and rapid system analyses.

A recently uncovered characteristic of all present versions of the single-
coast computer programs is the dependence of computed values of powered time and
exhaust velocity upon the input guesses for the ratio of powered time to trip time
and the ratio of constant-thrust J to variable-thrust J. Iterations on these ratios
using the computed powered time and constant-thrust J are not part of the internal
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iterations between the exhaust velocity (and powerplant fraction)and the trajectory
optimization subroutine. The result is that the computed system mass fractions
asgree quite well with exact solutions (from the multiple-coast program) but the
specific impulse is slightly in error and the powered time even more so. These
latter two approximations may not be sufficiently accurate for detailed analysis of
operating lifetime and system design requirements.

A byproduct of the foregoing characteristic is that the powered time has
practically no effect on the maximum payload fraction near the optimum specific
impulse. Thus the powered time may be reduced from its optimum value to mitigate
the lifetime and operating requirements of the thrustor with no significant
reduction in payload capability.

Additional Curve Fits for Thrustor Specific Mass

The sum-of-exponentials approach used above for determing the analytic
approximation to the thrustor specific mass function is quite accurate and
yields a smooth curve for the function and its first derivative. Although
this approach is suitable for any curve of the same form, it is time-consuming
to determine the appropriate coefficients in the analytic approximation.

To expedite the analysis of other types of thrustors which may have some-
what different curves than those presented herein, an alternative analytic
approximation was studied which quickly yields the necessary constants. It is
necessary to specify the sample points of the given curve at exhaust velocities
of 20, 40, 60, 80, and 100 km/sec. A fourth-degree polynomial is fitted through
the five sample points using exact matching. Thus the coefficient matrix can be
determined immediately by multiplying the data matrix (of sample points) by a
transformation matrix, D. If the five sample points are chosen at the specified
exhaust velocities, the matrix D remains the same for any other thrustor curve.

Table V gives the polynomial, the required input, the equation for the
coefficients, and the transformation matrix, D. The analytic approximation
and the required first derivative are quickly obtained and may be substituted
in the iteration procedure for the equations of Table IV. The coefficients
for the four thrustor curves displayed in Fig. VII-1l are presented in Table VI.

The polynomial approximation has the disadvantage of producing wavy forms
for the function and its first derivative and of not yielding accurate values

between the data points. However, these characteristics are probably well within
the accuracy probably desired for mission and system analyses.

Hybrid-Thrust Mass Optimization Program

Capabilities

The purpose of the mixed high- and low-thrust mass optimization program is to
minimize the gross vehicle mass on Earth (or planet) parking orbit for a given
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payloadto be delivered at the termination of the mission. The program handles
three (one-way) flight modes and a round-trip mission:

Planet-to-planet orbits
Planet-to~no capture
Planet~to~planetary entry
Earth-to-planet-to-Earth

o

The first mode is the usual parking-orbit-to-parking-orbit mission between
two planets. The second includes terminal conditions such as planetary flyby,
solar probe, out-of-the-ecliptic, etc., wherein the final conditions are specified
as heliocentric position or velocity. The third mode is similar to the first
except that the capture at the planet is accomplished by a direct entry with
atmogpheric braking. The final case, the round-trip mission, is essentially a
combination of the first and third modes. In all cases the mass of the payload
to be delivered at the planet is 1o be specified as well as a range of values for
the appropriate hyperbolic excess speeds and propulsion system parameters.

General Characteristics

In general, the program is a mass computation procedure that determines the
mass of the entire wvehicle before departure from the initial parking orbit
(either from Earth or a planet). For a given final payload mass, final hyper-
bolic excess speed (if any) and departure hyperbolic speed, the initial mass of
the vehicle is computed taking into account the mass of the life support system
mission modules, solar shelter, basic structure and radiation shielding.

For mixed-acceleration systems the overall payload fraction y. of the entire
vehicle is given, in general, by

ML = UiLp HLH MLc

where subscript C represents the payload fraction of the capture system (either
high-thrust propulsion or atmospheric entry) which delivers the final payload

mass, H denotes the payload fraction of the heliocentric low-thrust system which
delivers the capture system plus final payload to some final hyperbolic excess
speed, and D signifies the departure high-thrust system which accelerates the final
payload plus the capture system plus the electric system to a given initial
hyperbolic excess speed. If the flight mode is (2) above the factor pLc would

not appear. V
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The coupling between the heliocentric phase and the boundary phases is through
the hyperbolic excess speed. The payload fraction, u.y, is computed by the helio-
centric trajectory optimization program for various values of the hyperbolic excess

speeds on the boundaries. These data are entered into the program in the form of
a table.

The minimization of the initial gross vehicle mass on parking orbit is ac-
complished by a direct search technique on the hyperbolic excess speeds relating
the high-thrust and low-thrust propulsion phases. At each trial set for the
hyperbolic speeds, the gross mass is computed and compared with previous values to
determine appropriate speeds which tend to decrease the mass. This procedure has
been found to be quite efficient in problems of this type.

The high-thrust step mass computation subroutine is an improved version of
that developed under the initial phase of Contract NAS2-2928 (Report UARL E-910352-9,
July 1966). The subroutine includes gravity losses and optimum thrust-to-weight
ratio for minimum step mass. Various types of high-thrust propulsion systems
may be employed (chemical, solid-core nuclear, liquid-core nuclear, etc.) by the
proper specification of engine parameters such as specific impulse, thrust-to-
welght ratio, minimum engine mass, and maximum thrust.

The additional mass for a manned spacecraft employs the scaling laws reported
in E-910352-9. In these laws the life support system mass is given as a function
of the total mission duration and the number of men in the crew. Fixed masses are
assumed for the misgion and living modules, shelter, etc.

The scaling of the entry follows the convenient law

where m, and m; are the masses of the ablative entry system and a reference system,
respectively, and V; and V{ are the atmospheric entry velocities, required and
reference, respectively. The factor { is an entry system growth parameter which
predicts the growth of the reference system mass as higher entry velocities are
accommodated. This growth parameter can be determined by matching the theoretical
curve with one of interest. The above scaling law is merely representative of
ablstive systems and is employed here for convenience. Provision is made in the
program for adding a storable propellant retrorocket if V; exceeds a maximum entry
speed limit.

The low-thrust mass computation subroutine employs the usual low-thrust mass
equations for constant-thrust operation. The change envisioned herein is the
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utilization of an improved definition for payload fraction which includes the
mass of the thrustors, propellant tanks, and miscellaneous structure as well as
the powerplant. This procedure is utilized in order to maintain compatible
detail between the high-thrust and low-thrust mass computations and, consequently,
to compute a fairly realistic vehicle mass and its associated subsystems.

The variation of thrustor efficiency and specific mass with exhaust velocity
utilized are those given in Figs. VII-1 and -11.
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TABLE MII-I

CONSTANT—THRUST OPTIMUM SYSTEM PARAMETERS

SIMPLIFIED PAYLOAD FRACTION DEFINITION
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TABLEWII-2

IMPROVED PAYLOAD FRACTION DEFINITION
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TABLE VII-4

CONSTANT—THRUST OPTIMUM SYSTEM PARAMETERS

IMPROVED PAYLOAD FRACTION DEFINITION

pilt =p)/p
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SECTION VIII

VARIATIONAL FORMULATIONS OF POWER-LIMITED TRAJECTORY AND

PROPULSION-SYSTEM OPTIMIZATION PROBLEMS -

Introduction

The original application of the Newton-Raphson algorithm to solve the two-
point boundary value problem associated with low-thrust trajectory optimization
was presented in Ref, VIII-1. In that work only the simplest problem was treated,
the two-dimensional trajectory optimization problem for a power-limited propulsion
system that is completely unconstrained in thrusting direction and magnitude of
exhaust velocity. Subsequently, more complicated problems have been solved
including constant-thrust, minimum-time rendezvous (Ref. VIII-2); maximum final
mass for constant-thrust with optimum~-coast, fixed-time rendezvous; and varisble
thrust with power given as Poe %/T% (Ref. VIII-3).

In the present study more realistic constant-thrust problems involving
additional complexities and constraints have been considered. Optimization of
propulsion system parameters which are constant in time along with the tra-
jectory and thrusting program has been analyzed, closely following the original
analysis of Ref. VIII-k4.

In the initial analyses performed during the early portion of the contract
period, several constant-thrust flight modes were completely analyzed. The varia-
tional analysis treats any continuous power-available function of position and time
The boundary and transversality conditions considered in the study include fixed-
time planetary flyby, fixed-time flyby at a given radius, optimum fixed-time
orbital transfer, and optimum fixed-time round trips. The effect of discarding _
inert mass during coasting periods has been investigated. Finally, the problem has
been considered wherein the thrust vector is constrained to make a constant angle
with the radius vector in three dimensions. The equations for those problems of
immediate interest resulting from this initial analysis are summarized below. Part 2
of Appendix A details the derivations for all the problems cited above.

Tmmediastely after the summary of the initial problem set, the development of
two additional problems is presented. The first is the round-trip stopover mission
with optimum launch and arrival dates at both planets for‘prescribed values of
total trip time and stay time. The second problem is the variable-thrust round-
trip flyby including the effect of the intermediate planetary perturbation. The
corresponding constant-thrust case was not formulated. In the interest of brevity,

VITI-1
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only the major results of the analysis are presented here. The analysis is based
upon the developments in Appendix A of this report. A complete, though non-
rigorous, derivation of the general variational calculus results upon which these
formulations are based is presented in Appendix A, Part 1.

A final problem treated is the substitution of the analytic solutions for the
numerical solutions in the coast regions. This problem arose as the result of the
computer storage requirements; the use of analytic solution reduces the number of
mesh points and, consequently, the amount of core storage needed.

Summary of Initial Problem Set

The several flight modes summarized herein are distinguished by the appropriate
boundary and transversality conditions. These include planetary rendezvous,
planetary flyby, flyby at a given heliocentric radius, and optimum orbital transfer,
all for a fixed-time transfer. These foregoing conditions correspond, respectively,
to the following flight modes: a planet-to-planet rendezvous, one-way flyby of a
planet, a solar probe passing at some heliocentric radius, and, finally, an optimum
transfer between any two heliocentric orbits. In all of the following equations
the objective function to be maximized is the final payload-to-gross mass fraction
with respect to exhaust velocity (specific impulse) and powerplant fraction.

For the rendezvous mode, only constant power is considered although single or
double coast periods are treated. In the case of the flyby, constant power is again
congidered with a single final coast period or an intermediate and a final coast.

The solar probe is treated with power ranging as a function of heliocentric position.
In this instance three cases involving coast periods are considered: (l) single
final coast, (2) intermediate and final coasts, and (3) two intermediate and one
final coast. 1In the final problem, optimum orbital transfer, the power is con-
sidered to be a function of heliocentric position and one or two intermediate

coast perios are treated.

Problem 1: Constant-exhaust veloecity, constant-power, rendezvous in fixed time
with multiple coasts.

Final payload fraction is maximized with respect to powerplant fraction and
exhaust velocity.

SV ZPwnB AN+ _ X -
Xi' AwCp P 3 (l-', 2,3)
] Nies o, 33X 2
AN+s © 3 5 2 Ma3X]
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where m{t) = | - 2/-sz"7 fB
a,c

Switching Times:
(a) Case 1. Single intermediate coast - switching times at T; and T;.
PIT) = p(T,)

1 for t =T and t =2 Ty

O for Ty <t < 1T

() Case 2., Double intermediate coast - switching times at Ty ; To, Ts
and T4

p(T)) p(T2)

p(T3) = p(T,)

T3
P(Ty) _ p(Ta) 2«,7,wa_;>_

= —5 - dT
u(T3) wlT2) Cle2 /.L2

T

B =

| FOR 0SSt T, Tast<Ty, Tast T
O FOR T, <t <T,, T3<t<T,

(c) Case 3. Single intermediate thrust period, switching times at T and T,.

T,
p(T2)  p(Ty) xrm p

N 2 2 dT
plTo) ulT)) a,C M
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| FOR T, <t<T,
B =
O FOR OSt<T,, AND T,<ts£T

o ——t e e — —

Xi(0) = g;(0) (i =1,2,3)
X;(0) = g;{(0) + V,(0) ———ro
‘< q; (0) ( o
Xi(T) = g; (M
Either
- o Nis3(T)
Xi(T) = gi(T) = Ve (T) —W »  OR >‘i+3(T) = 0

apladeirtgrioninind Silfhudapiu triptuigecdig B

cp (T) 2Mpw f P8 4T

Ay (T) = T BurC
Te 3
cp(Tg) 2npy p
- dT
0

where T, denotes conditions at the time of launch and T¢ denotes the conditions
at final time.

ou
[pm - by (1 + ap; )] \elT) = 2, (0) = 0
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op 2uwm ; di c

F w n-q p

AplT) =2 a,C3 f( )'T, 8 dt
0

d Inm ; 2pym 4 PR
— 2 -— C B — -— RS E ey =
( = )(A,L(O)ofﬂdt + e f” -3 dt)] 0
0 .

—— i p— — —

peor = BT = pw = pelpw, C) — pg

Problem 2: Problem 1, only with flyby

Boundary Conditions

— e w— g o —

——— — p— D —— p— ——

(a) Case 1. Single final coast - switching time at Ty.
g = I FOR t < T
O FOR t > T

(b) Case 2. Intermediate and final coasts - switching times at T,, Ta,
and Ts.

| FOR 0St<T, Tosts Ty
T JOFOR T <t < Ty, t>Ty

p(T) = p(T2)
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.
P(Tz)  p(Tp) N 2pun [ p dt
BTy (T ayc? J uE
T2
Boundary_Conditions
Xi(0) = g;(0) (i =1,2,3)
. ' Xi+3(0)
Xi(0) = §i(0) + VwlO) —
XilT) = gi(T)
M) =0
Subsidiary Conditions
Cp(TL)
A (T) T(TT—D—
Cp(Te) 2pm [ p
F w
0) = - 02
A (0) (T ayC J W2 a

d
[}Lm . (1 + a,’:‘ >] AplT) = A (0) = 0
. w

;
s 2 pu f( cdinn > Cp
Ap(T) + |- '
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Problem 3: Solar Probe with Power a function of position.

Final payload fraction is maximized. The function of position is denoted by f.

— o e w— — hoan -

g 2wmfB o Ny X
ayCu P s
Nigs = ——ir3 . 3Xi : 2npeB  of (cp
k=1
. =3 1/2
.. PA 2 27Mu A
- — K _ L -
Ae = Tp Y TC awC ( P FOR B =1

Ap = AulT) FOR B =0

- /2 n4wfp
M~ awCX# FOR B =1

k= pu(T)) FOR B = 0O

where Ty is the time at the beginning of the coast period.
Switching Times

(a) Case 1. Single final coast - switching time at T,.

| FOR O < t
B:
O FOR T, < t

IA A
-

VIII-T7



F-910352-13

(b) Case 2. Intermediate and final coasts - switching times at T, T, and

Ty .
| FOR 0< t<T AND Tp<t <73
" 1o For T, <t<Tp AND Tz3< t =T
p(T) = plTyp)
Ty
p(T3) _ p(Ta) + 2/J-w17 pr d1
p(Ts) p(T,) a,C 2

(c) Case 3. Two intermediate and one final coast - switching times at Ty,
Ty, Tg, Ty, and Ts.

| FOR O £t S T; T, St T3, Tt =Ty
B = ,
O FOR Ty <t < Tpy Tyg< t < Ty Teg<t T

p(T)) = p(Ts)

T3
P, PM) o 2up o RIB
©(T3) p(T5) ayC pe
T2
D(T3) = D(T4)
.
p(Tg) _ P(Ty) . 2um - pfB .
1 (Ts) 1 (Ta) awC pz a1
Te
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— o wa— p— —— — — — —— o—

X; (0) = g;(0) (i =1,2,3)

V, (0) Aj43(0)
p0)

)'(3(0) = éi(O) +

3
z [xim]a = R?

AL A Xg(T)  Xp(T)
Xg () XM KM ~ " XgM
PIT) = 0

cp(T)
Cp(TR) 2 o
F BT p
A (0) = -
M u(Te) awC p dt

0o

O
{p(T) - pw (a + a#; ﬂ Ay (T) = 2,(0)

A, (1) Sk, 2R fTZ— Cdinm \fCp _»\ Y\ - P lip4t - o
# oC a,c® ¢ dc z # Iz -

Problem 4: Fixed-time optimum orbital transfer, solar power, multiple coasts.

Final payload fraction is maximized.
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X;(0) = gi(&); XM = g;i&2)

X;(0) = g€ XM = §il&e)

z )\l+3 dé.l - l+3 d{l

(| t=0

3 .
dg; . dg;
z <>‘i+3‘(g - ’\i+3—d€—'2> =0

Same as for Problem 3.

The Round-Trip Stopover Mission

The mission profile has the following characteristics. Use is made of high-~
thrust impulses departing Barth, arriving at the destination planet, and departing
the destination planet. The magnitudes of these impulses are fixed input, and no
optimization is carried out with respect to them internal to the algorithm.
Atmospheric braking is employed back at Earth. Two power-limited propulsion
systems constrained to constant-thrust-with-coast operation are employed, one for
the outbound leg and the other for the inbound leg. The first propulsion system -
including powerplant, thruster, and tankage - is staged at the destination planet
along with a high-thrust rocket, tankage, and an intermediate payload.

The objective function for the algorithm is minimum initial mass of the space
vehicle after staging of the initial high-thrust rocket and tankage, for a given
final payload mass back at Earth. If desired, the optimum distribution between
high thrust and low thrust can be obtained by running a sequence of cases with
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varying amounts of high thrust. For each case in such a sequence, the algorithm
optimizes the low-thrust propulsion not only with respect to the trajectory, but
also with respect to the two sets of propulsion system parameters. The trs-
Jectory optimization includes optimization of the distribution of leg times and
of launch date for fixed trip time and stay time at the destination planet. It
also includes optimization of the directions of the hyperbolic excess velocities
due to the high thrust.

Governing Equations for Constant-Thrust Case

Because the objective function for this problem is minimum initial mass for
a given final payload, the mass fraction is defined somewhat differently than in
the previous formulations. The objective function

Z = Kp(0) (VIII-1)

is to be minimized where the mass fraction is

m(t)
p(t) = (VIiII-2)
m

p

and m, is the final payload mass. The differential equations that must be
satisfied in thrusting regions are the following.

1y /4 i _
% - (ﬁ&z__) (2:&)’2 N+3 o Xiq:o,2,3  (VIII-3)
Ayy Cy p p r3
A 3X 2
: i+3 [ Z
! - - + i X;
o3 F j+3 X
Ni+3 r3 rS i (VIII_)_’_)
s = 3 .
N = 2 (277““'“’ >2 Au 2 . up
Cov \ayyCy pYe p (VIII-5)

1 for outbound leg (0 <t <T,), T, = planetary arrival time

Where Vo=
2 for inbound leg (Tp <t <T), T,

it

planetary departure time

VIII-11



F-910352-13
During coasting periods the system becomes

X = - = (VIII-6)

A = 05 Au(h) = AulT) (VIII-T7)
in addition to Eq. (VIII-4) which remains the same. In Eq. (VIII-7), T, is the
time at the beginning of the coast period.

The switching times between thrusting and coasting periods are governed by
the switching function

CyP
= - )\H_
7 ®
1
[ 2nvHwup )’2 (VIII-8)
where K= GwUCuxp

during thrusting periods and p(t) = (T, ) during coasting periods.

The transversality conditions that must be satisfied relating conditions at
Ty and Ty (the times of arrival and departure at the destination planet) are the
following.

3
Ai+3(0) - Ai+3(b)
(a) A Voo (D)X 2 (b) —=
L Voo (@) Xi43 (0) p(a) TS p(b)
b ST gy o BaBw gy g |
a, g ay,c2 (VIII-9)
Apf@) = Au(b) (VITI-10)
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From the fact that
p(b) = w(@) = (pw + pe +ops + o) (VITI-11)

an additional relationship is obtained,

-1
Xu(b) =

2, prw, P(D) <2n.#w.9(0>

.

2

- - + + + _
ay, Cihy(a) > Hw * pe + ops *opr) (vIiII-12)

awz C2

Furthermore the boundary values of x; and X; must be related to the planetary
position and veloclty components, g, and &y, at the times T, and T.

Xj(a) = gi(a); Xij(b) = g;(b) (VIIz-13)

Ai+3(a) Ni+3(b)

Xi(a) = gila) - Vg(a) b
{ gl o0 p(b)

©Xi(b) = gi(b) + Veolb) (VIII-1%4)

Equations (VIII-9) through (VIII-14) provide sufficient internal boundary conditions
for the system of differential equations, Egs. (VIII-3), (VIII-4), and (VIII-5).

These conditions determine the optimum distribution of leg times for a given
total trip time. It remains to provide information concerning the optimum launch

date for the trip. This is provided by the following additional transversality
condition.

3 , ' : \i+3(0)
Z'{)\H:ﬂ('r) [Xi(T) - gi(T)] = Ni43(0) Voo (0) = 2= }
i=

2n p 27y Hw

I w, 2 2

+ —————%(0) = ——— 7 (T) =
QW'CIZ l awzczz 2 0

(VIII-15)
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Ope, 27 pw, (To dinm, \ /¢,p c,p
22, (a) + f [(2— c )( - A > - —'—-] dt = VIII-16
# ac, QWC? 0 ‘.dC, g I o )

a/.l.; |
A (0)(l+ > - “‘“‘{ (a)a - A z
K Show L p (@) = (0)Ap(0) 0 (VIII-17)
ou 2 ! din
F
i e [ [(e- o2 0)- 52
W
2 S L 2 (VIII-18)
Au(T) <¢+ ﬂ) - (T AW (T b)X, (b)
wn\n ) - o [ - wom] <0 g

Transversality Conditions for Variable-Thrust Case

The corresponding variable-thrust solution of the round-trip stopover mission
is required as a starting approximation. The system of differential equations
is the same as usual. Corresponding to Egs. (VIII-9) and (VIII-15) for the
constant-thrust case, the variable-thrust transversality conditions are

p2(a)  p2(b) 3

. A , ;
> 2 " Z[ma(o)voo(o) "3 (@) + Kisa(b)Veolb) i3 ] - 0
=l P P (VIII-20)
2 2 3
p(0) P%(T) ‘ ‘
> + Z)\;+3 (T)[Xi(T) - qi(T)]
izl
: Ai+3(0)
= ) Ais3(0)Ve(0) —F227 -
Z e = (0) (0) (vIirI-o1)

i=l
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Round-Trip Flyby Mission (Variable Thrust)

The only way to avoid large amounts of machine time and tedious matching
of boundary conditions at the destination planet in the optimization of the
trajectory for the round-trip flyby is to employ internal transversality con-
ditions and solve the outbound and inbound legs simultaneously. Unfortunately
these conditions for the variable-thrust starting solution are sufficiently
complicated to raise the question of whether the corresponding constant-thrust
system may defy numerical solution. If such is the case, an alternative would
be to use the variable-thrust solution to supply fixed internal boundary con-
ditions for the constant-thrust solution. Such boundary conditions would be
very close to optimum, and if the exact optimum is desired a numerical search
procedure could be employed.

The effect of the planetary encounter at flyby is to change the space
vehicle's velocity vector. In the standard approximation of separating helio-
centric and planetocentric motion, this velocity change is considered to be
impulsive. As a result of the encounter, the wvelocity vector in the planeto-
centric frame undergoes an orthogonal transformation, the matrix of which
depends upon the periradius of the planetary encounter, the planetocentric
energy, and the orientation of the plane of the planetocentric hyperbola.

If the planet ideally were coniidered to be a mathematical focus of
gravitational attraction, then any V_ vector could be rotated into any direction
by proper selection of the periradius. However, one must consider the inequality
constraint imposed by the fact that the periradius camnnot be less than a lower
bound imposed by the radius of the sensible atmosphere of the planet.

Instead of optimizing subject to the inequality constraint, the problem
can be treated in two parts. First, the problem is solved subject to no
constraint on the periradius. If the optimum periradius turns out to be less
than the imposed lower bound, the problem is solved again fixing the periradius
at the lower bound. This is the same procedure used to handle the inequality
constraint on the final reentry velocity. The technique alsc allows one to
specify any desired value for the periradius.

General Transversality Conditions for Round-Trip Flyby

Since the variable-thrust equations of motion and Euler-Lagrange equations
for this mission are the standard ones, only the various transversality con-
ditions will be given. The general transversality conditions for the round-
trip flyby are

T

3
[— Hdt + Z(’ Xi+3 dx; + )"i+3d>‘(i)] = 0
izl N (VIII-22)
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W
O

3 Ta+ €
[-— Hdt + Z(‘ Ni+zdxj + >\i+3d>'(i)]

1=1 Ta-e

- (VIII-23)

where T, is the time of flyby. Equation (VIII-22) determines the best launch date
for the round trip. For the case of a given V_ at t = o and velocity open
(fiyby) at t = T, Eq. (VIII-22) gives

Nip3(T) = 0O (i =1,2,3)
(VIII-24)
p(m? 3. , , p(o¥ 3 Ai+3(0)
- + ), M+3(T)[xa(T) - gi(T)} + = D Xi4(0) Vo (O) 22
2 izl i=1 p(0)
(VIII-25)

The second condition, Eg. (VIII-23), detemines the best flyby time and the
optimum characteristics of the planetary encounter. The latter, of course,
depend upon the constraint on the periradius. It is instructive to first consider
the case where there is no planetary perturbation. This corresponds to a very
large periradius of the encounter. For this case Egq. VIII-23 gives

T§ (Tq+ €) = P(Tqg—€)
(VIII-26)

and

(VIII-27)

The more general conditions must reduce to Egs. (VIII-26) and (VIII-27) in the
limit as the periradius goes to infinity.
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Transversality Conditions for Periradius Unconstrained

Next, consider the case where the periradius is completely unconstrained.
In the planetocentrie frame of reference the orthogonal transformation of the
V, vector is represented by a 3 x 3 matrix A = [a;,].

Vo (Tg+€) = AV (Ty - €)
(VIII-28)

The orthogonal, unimodular matrix A can be specified by three independent Euler
angles {, 6, and .

cos¥ cos¢ — cosfsingsin¥  —sin¥cos ¢ — cosfsinpcos¥  sind sing
A = cos¥sing + cosf cos¢ sin¥  —sin¥ sing + cosfcospcosy  —sinfcose
sinf sin¥ sinfcos¥ cos @
(VIII-29)

In terms of heliocentric vectors, Bq. (VIII-28) is

T(Tg+€) = GTg+€) + A[T(Tg—€) = §(Tg—e)]

(VIII-30)

which becomes upon differentiation

dV(To +€) = GlTq + €)1dt(Tg+€) +a[dV(T - €) - GTa — €)1 dtiTg - €)

+dAhﬂm—e)—3ﬁf—ﬂ] (VIII-31)
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where the matrix dA = [da;,]. For example, -

da, = —(sin¥cos¢ + cos¥singcosB)d¥Y — (cos¥sing + sin¥cosdcosf)lde

+ sin¥singsingdg, etc.

(VIiTI-32)

When the components of Eg. (VIII-31) are substituted into the general
transversality condition, Eqg. (VIII-23), and the coefficients of the independent
variations, dt(T, - e), ak, (T, - €), d}, dp, and 48, are set equal to zero, the

following conditions result.

P(Tqg + €) = AP(Tq + €)

BP(Tq+€) = 0O

where

B = [by] (i,i=1,23 and

b” = 02|X|(T0—€) + OZZXZ(TG-'E) + 0235(3(1'0—6)

byz =0

VIII-18
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(VITI-34)

(VIII-35)

(VIII-36)

(VIII-37)
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b2| = —GIZ).(I(TO"E) + Qu)'(g(Tq“e) (VIII-39)
bpp = —0ppX, (Tq— €) + 0, X, (Tg—€) (viIz-4o)
b23 = _G3ZX| (Tc — €) 4+ 03| XZ(TG - € ) (VIII-I-(-]_)

by = 01303 X (Ta —€) + 0 ;303,X,(Tqg — €) + 0z033X5(Tg~€)  (VIII-42)

Dys = Q3 033X, (Ta= €) + agp AgaXp(Tq— € ) + (1 = 0 1Xg(Tq— €) (VIII-bh)

Equation (VIII-33) corresponds to Eq. (VIII-26) for the unperturbed case, and

Eq. (VIII-3M), which determines the optimum flyby time, has exactly the same form
as its opposite for the unperturbed case, Eq. (VIII-27). The additional vector
equation, Eq. (VIII-35), has to do with determining the optimum values of the
three Euler angles, {, ¢, and 6, in the rotation matrix A. Altogether at the
flyby point, thirteen quantities must be determined, i.e., the time, 3 position
coordinates, 6 velocity components (3 at T, - ¢ and 3 at T, + ¢), and the three
Euler angles. The equations of transversality, Egs. (VIII-33), (VIII-34), and
(VIII-35), supply 7 of the required 13 conditions. Equation (VIII-30), relating
the vehicle velocity at T, + ¢ to that at Ty - €, supplies 3 more of them.
Finally the ephemeris equation, r = g(t), supplies the remaining 3 conditions for
the position coordinates. Thus the equations presented above supply sufficient
information to determine the intermnal boundary values at the flyby point.

Round-Trip Flyby Transversality with Periplanet Radius Fixed

Finglly it is shown how the above conditions must be modified in order to
constrain the periplanet radius to a fixed value. For given values of periplanet
radius and hyperbolic excess velocity, the angle & between the incoming and out-
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going asymptotes is fixed. This means that only two of the three Euler angles
in the rotation matrix A may be varied independently. This additional constraint
may be expressed as a constraint on the trace of A.

X = a +0p, +Gg3= |+ 2C0s0 = 3 - —:2 (VIII-45)

where e is the eccentricity of the planetocentric hyperbola.' The eccentricity
is related to the hyperbolic excess velocity simply by

e = 1+ KVZ = | +KAV (Tg—€) - G(Ty)? (VIII-46)

where V, is in EMOS and K = \/ HsTp/np(1an) » Substituting Eq. (VIII-46) into
Eq. (VIII-45),

(1 +Kk22 P = 3(K2v2 +2)KkBVE -1 (VIII-47)
and differentiating,
2
2,,2,2 _ _8k 2
(1 + KBV2ZAX = ————p dVE
> 1+ k%Ves (VIII-48)

In terms of the Euler angles

X = (1 +cosf)cos(¥ +¢) + cosd (VITI-49)

and

dX = —{l+cosf)sin(¥ +¢)(d\y+d¢) - [|+cos(\y +¢)]sined6‘ (VIII-50)
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while

3
dv2@ = Z{[axino— €) - 2§ dXiTy— €) + [24; - 2X(Tq — €] '(jidt(Ta)}

iz}

(VIII-51)

Using Eq. (VIII-48), the variation dP can be solved for in terms of the other
variations. Then this can be substituted for the variation d® in the general
transversality condition, Eq. (VIII-23). The difference between this case and the
unconstrained case is that, in the latter, d® was another independent variation.
Since the algebra is rather involved only the resulting conditions will be
presented. To shorten the notation the following functions are defined.

_ (1+cosB)sin(¥+¢)
F —
(6,%¢) SIB(1+CoS (¥ +9)) (VIIL-52)

8k®
[l +¢os (¥ +4>)] sin@ (1 +K2V£)2

G(¥, ¢, 8, X;(-€) = (VIII-53)

b3' A f b32 1 b33

by, = F—== 13 by = byz = 77—
/——“I_G§3 M — a2 o, [1 — 2. aZ, (VIII-54)

G'= (;[b:;l Ag(Tg+€) + b‘32)\5(T0 +€) + b;53>‘6(T0 + € )] (VIII-55)

Employing the above definitions, the resulting transversality conditions for the
constrained periradius case may be written as follows.

P(Tg+€) = AP(Ty—€) — 2G‘A[’17(Ta—e) —ERTG)] (VIII-56)
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Tot+ €
p2 X - 2
[—7 +plv—-g)f =0 (VIII-57)
. T
2 3 .
> B AiazTg+ €) + F Y biidia(Ty+€) =0 (VITI-58)
i=1 izl
3
D (by + Fb )X 4(Tg + €) = 0 (VIII-59)

I=l

It is seen from Eq. (VIII-56) that the primer vector no longer undergoes a
gsimple orthogonal transformation at flyby, but the norm of 5 changes depending in
part on the hyperbolic excess velocity. This being the case, the norm of 5 appears
in Eq. (VIII-57), but otherwise Eq. (VIII-57) has the same form as for the uncon-
strained case, Eq. (VIII-34). The three equations determining the optimum values
of the Euler angles are Egs. (VIII-47), (VIII-58), and (VIII-59). Again there
are 13 internal boundary conditions to be specified and 13 equations.

Analysis of Analytic Coast Solutions

A major limitation to the finite difference Newton-Raphson algorithm for
solving systems of nonlinear differential equations with split boundary conditions
is its large requirement of computer storage. Among other factors, the storage
requirement depends directly upon the number of mesh points employed for a
particular problem. In the particular case of constant-thrust-with-coast tra-
jectory optimization problems the algorithm has always been used to numerically
solve the whole trajectory including the coasting regions. But it is well known
that analytic solutions exist for both the trajectory and the associated primer
vector in coasting regions. If these analytic solutions could be coupled with
the numerical problem at the switching points a great many mesh points would no
longer be needed, thereby permitting a reduction of computer storage requirements
for a given problem.

Generally speaking, the cases that make the most severe demands upon computer

storage are the trajectories to the outer solar system (Jupiter and beyond) and
these trajectories usually involve coast periods which constitute a major portion
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of the trip. Consequently, while the great majority of these cases cannot be
handled conventionally within the limitations of core storage, substitution of

the anzlytic solutions for the numerical solutions in the coast region will permit
the treatment of many of these difficult cases within the confines of core storage.

Analytic Solution of the Eguations of Motion

Let the two switching times w1th a coast between them be T, and T,. The
state and prlmervector at T1 (rl, vi, pl, pl) completely determine these same
quantities at Ty (rg, Vg, pg, pg) through the analytic solutions of the eguations
of motion and the Euler-lLagrange eguations over the coasting arc. Including the
three components of the position, velocity, the primer vectors, the time
derivative of the primer vector, and the time, there are thirteen quantities to
be related across the coast period. The same number of equations is needed for
the analytic solutions.

The first six equations relating the states at T and T are provided by
Ref. VIII-6 in the form of the two vector equations,

T}: [‘_. e <{ J 'r2 )]_\‘ N xrp (T\T})A
2 XV ! R 12’
|7, XVII nr, g "Vu‘ (VIII-60)
and )
v = [ v /!_. nr ) _ |7 xT2 | ]._>
2 L xv2v r2rlr, xvl J
+[1— f (|— r,-rg)}v.
[T, xV,|? rr !
(VIII-61)
. Wit L 20
where el 7)) = 1723

—qu(r,xrzg <0
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Depending upon the total energy, the switching times are related by one of
the following two equations.

_ 3/2 .=l .F;_\T;> N "|<-ﬁ V'> | - —
T, -T, =@ sin - sin - (r, -V rov, )
2 ! [ (e a e/a /a 2 Vo [ u]
(VIrz-62)
T ~T-03/2—51nh—'<r"v'>+sinh_' M2 Vo 4 2o
2 [ ev/a e /a ﬁ(EZrIVI)]
(VIII-63)
where
—_ __}2
e =201\ 7 V] 2 q1/2
- (A X Vy
e= |1 xV |( ; ) + ( r —l> ] (VIII-6k)
and

-~ .2
T v

S 0-e?)]

Equations VIII-62 and VIII-63 are applicable for e < 1 and e > 1 respectively.

Analytic Solution of the Euler-Lagrange Equations

The primer vector solution is taken from Ref. VIII-5. In addition to a and e,
a number of other auxiliary parameters are employed in expressing the solution but
all of these parameters are directly expressible in terms of Ea, vy Fé, and Vé.

These additional auxiliary parameters are Q, I, w, 1, f5. First, it is

shown how each is expressible exlusively in terms of the state at Ty and Ts.
Define a unit vector n normal to the plane of the coasting arc.

(VIII-66)
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Then cos T=n-%k (lst quadrant) (VIII-67)

Let n' be the projection of n on the x-y plane.

= - - -
= ing+ Ny (VIII-68)
Then for the longitude of the ascending node,
cos § = (R xn O ( 6
= x| VIIT-69)
and
(Fx07)2
sin §) = 4—
/7
e ] (VIII-70)
The true anomalies at the switching times T, and T, are given by
e a2
7y x Vi | Exvff |
T — r— = - —
cos f, s 5 ' cosf, -‘—‘r 5 s (VIII-T1)

i 2

where r, v are vectors at the respective switching points.

In Ref. VIII-5, Lawden gives the following analytic solution for the primer
vector over a coasting arc.

- ‘ _ (D - Asinf)sinf
p’= A-Bsinf + C(Ijcosf -1;)sinF T 1 + cosF

B(e + cosf)

(VIII-72)
(D - Asinf)cosf Ecos f + Fsinf

| + ecosf i+ ecosf

+ C(I,sin2f +1Ij)cost +
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where I; and Ip are defined below.

| f | f 60° -l( ) f >
I, 8 ———1tan — - ———— cot — - —=2F [——= —
o2(1-e2) 2 2(1+e) 2 (1 -e?)5%/2 fan |+ @ fan 2

3

+ e ' sin f . @< 1)
(1 +e2)2 | + ecosf
(VITI-T3)
1 f | 602 - _ f
I,= tan — - cot — - tcnh< ton—)
T oe2o ) 2 2(e + 1) 2 (e2 - 1)57/2 e+ | 2
s e sinf i (e >1) (VIII-T4)
(€%+ 1)2 | + ecosf
g _| 1cn5—f—-+—'—10n3L+-3—ton—-f———'—co’r—i—; (e=1) -
L ® 40 2 8 2 8 2 8 2 (VIII-75)
I = __ootf + (I+ecosf)-£L-' (e £ 0) (VIII-T76)
2 e(l + ecosf) e ol

In Eq. VIII-72, A through F are constants of integration to be determined
by boundary conditions. Actually it is not necessary to determine any of these
constants since what is required is an expression relating the primer vectors at
T, with that at Tp of the same coasting arc.

The components of B' in Eq. VIII-72 are referred to a coordinate system where
the x and y axes are in the plane of the coasting arc and the x axis is in the
direction of the perihelion. Since, in the Newton-Raphson algorithm, the primer
vector is expressed in the standard frame with the x axis in the direction of the
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vernal equinox and the z axis perpendicular to ecliptic plane, it is necessary

to transform p inte this system. For this purpose the following three rotation
matrices are defined.

cosw -sinw O
Q = (sinw cosw O)

(VIII-TT)
0 0 ! :
| 0 0
A = ( O cosl -—sin 1) (VIII-T78)
0 sin | cos |
cosfl -sinfl O
S = (sinQ. cosfd O) (VIII-T79)
0 0 !
P = QRSP (VIII-80)

Now, in order to relate the primer vector at T; with the same at Tp, it is
necessary to solve Eq. VIII-72 and its time derivative for the 6-dimensional column

vector of infegration constants. To facilitate this operation the following matrix
elements are defined.

in2
- sin¢ f
ay (F,v) =1+ | +ecos f (VIII-gi1)
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Qpp = —sin f

Q13 = I;{f)cosf - T(f)

sin f
| + ecosf

Qg =

dis=016 = O

sinf cosf
| + ecosf

Qg ~

Q28 e + cos f

Apz = sin?f I;(f) + cosfIp(f)

- cos f
| + ecosf

VIII-28
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(VIII-83)

(VIII-84)

(VIII-85)

(VIII-86)

(VIII-87)

(VIII-88)
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31 = Qzp = Q033 = Gzg@ O

Qur = cos f
35 | + ecosf
sinf
a S CLL Lk I
36 | + ecosf

- 1T x vl [Zsinfcosf_ e sin3f il
4a - re t+ ecost (I + ecosf)®

- ..-I

,042 =

cosf

[T x vl

al : dT
43 = —73 {cosf(l, +—c7fL) ~-sinf I; - dle

o .- T xV {ecosac + 6cosf:l
44 ré (1 + ecosf)®

Jgs = Uge = O

VITI-29

(VIII-91)

(VIII-92)

(VIII-93)

(VIII-ok)

(VITI-95)

(VIII-96)

(VIII-97)
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ag, = T :2-;‘ [ecos3f - coszzf] (VITI-99)
(I + ecosf)

agp = Nl :2_‘” sinf | (VIII-100)
Ogz = ‘?‘rx;\‘ [sinzfll + sin?f dIfl ~ sinf I, +cosf C;Ifz] (VIIr-101)
o = - T x V] sin f (VITI-102)

54 re (1 +ecosf)e
Ogg = Gg6= O (VIII-103)
Og = Ogp = Ggz = 0gq= O (VIII-10k)
Qg = - Ifri’;fﬂ (VIII-105)
Oge ;‘—J';(%S‘f (VIII-106)
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These elements ay; define a 6 x 6 matrix.

N = (cij) (i,j=1,2,....,6) ~ (VIII-107)

—

If further the six-dimensional column vectors P and C are defined by

R/ A
: c
-/ __ 3 — _

=| ' : c = (VIII-108)

B, O

b £

then, Ps F
P/ :=NT (VIII-109)

Since the matrices Q, R, and S, given in Egs. VIII-7T to VIII-T9, do not depend
on time, differentiating Eq. VIII-80 simply gives '

P : QRSP (VIII-110)
Equations VIII-80 and VIII-110 are both expressed by
P=MP’ (VIII-111)
where M is a 6 x 6 matrix defined by
QRS 0
M= ( ) (VIII-112)
0 QRS
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Eliminating P' between Eqs. VIII-109 and VIII-11l gives

—

P -MNT (VIII-113)

Equation VITI-113 is a function of time which can be written for the two
switching times T; and Tp

) C (VITI-114)

o}
=
n
=z
=
3

1

B(T,) = MN(T)T (VIII-115)

Note that the 6 x 6 matrix M and the six-dimensional column vector of integration
constants C are independent of time. wa;C can be eliminated between Eq. VIII-1k
and VIII-115 giving the relation between P(T;) and P(T;) that is sought.

P(T,) = MN(T,IN (T)M P (T) (VIII-116)

Both of the 6 x 6 matrices M and N can be easily inverted symbolically using
Kramer's rule or Gaussian elimination.

The 13 equations that must be satisfied across a coast period are Egs.
VIII-60, -61, -62, and VIII-116. These 13 equations provide the same information
as the numerical solution of the equations of motion and the Euler-Lagrange
equations.
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VIII-1.

VIII-2.

VIII-3.

VIII-L.

VIII-5.

VIII-6.
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Section VIII Nomenclature

ay Matrix elements of rotation matrix
A Rotation matrix
by 4 Matrix elements defined by Eqs. (VIIT-36) through (VIII-Lk4)
B Matrix [by 4]
c Exhaust velocity
e Fecentricity
F Function defined by Eq. (VIII-52)
é Planetary position vector
¢ Function defined by Eq. (VIII-53)
H Variational Hamiltonian
K Arbitrary constant and also used as defined following Eq. (VIII-L6)
m Mass
- Ay
P Primer vector = As
Ag
r Radius
Tp Periplanet radius
t Time
T Specific instant of time
v Velocity vector
ﬁm Hyperbolic excess velocity vector
b8 Pogsition coordinste
Z Objective function
Oy Powerplant specific mass
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Section VIII Nomenclature (contd.)

Y Switching function defined by Eq. VIII-8

€ Small change in time used in 1limit as € - O

Ll Thrustor efficiency‘(function of exhaust velocity)
6 Standard Euler angle

@ Rotation angle of %@

Ays My Adjoint variable (i = 1,... 6), adjoint variable or mass ratio
" Mass ratio defined by Eq. (VIII-2)

o Thrustor ratio (in the sense of Eq. VIII-2)

BT Intermediate payload ratio

s Structure ratio

g Powerplant mass ratio

g Gravitational constant of the sun

Mep Gravitational constant of planet

0] Standard Euler angle

X Trace of rotation matrix

W Standard Euler angle
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APPENDIX A - PART 1

THE CALCULUS OF VARTATIONS APPLIED TO LOW-THRUST

TRAJECTORY OPTIMIZATION

The objective of low-thrust propulsion system and trajectory optimization is
generally to maximize that part of the final mass of the spacecraft defined as
useful payload for a given mission (defined mathematically be a set of boundary
conditions on position, velocity, and time). If the propulsion system is
specified, and only the trajectory and control are to be optimized, the objective
function is generally chosen to be maximum final mass.

Derivation of the Rocket Egquation

The power limited constraint specifies that the power in the exhaust beanm
shall not exceed the power available, that is

~Limee
M S 5 me (A-1)

It has been demonstrated that one always wants to use all of the power available

so the equallty of Eq. (A-1) must be used (Ref. A-1). The thrust acceleration is
given by

a = - m (A-E)

Eliminating the exhaust velocity between Egs. (A-1) and (A-2) one obtains

dm | @2

m2 =77 e O (4-3)

and integrating from initial to final time gilves the final mass.

| T 02
mm ~ mo ‘5.() o 4t (A-L)
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The final mass is meximized if the integral in Eq. (A-lI) is minimized. This is the
problem of Lagrange in the calculus of variations, and is the most convenlent way
to express the completely unconstrained problem. When constralnts are lmposed on
the thrust (magnitude and/or direction), however, it proves to be more convenient
to express the problem in the Mayer form where it is desired to extremize a glven
function of the endpoints. The Lagrange problem can always be transformed into the
Mayer problem by introducing an auxiliary state variable.

For example, the Lagrange problem of Eq. (A-4) is to minimize the functional
T02

J = j;—z—‘li—‘sdt (A._S)

Introducing a new state variable,z , satlsfylng the constraint,

. a?

z - -2? =0 (8-6)
then the new functional is

J=2(T) - z(0) (A-7)

which is a function of the endpoints and therefore in the Mayer form. It is not
surprising to find that

a? mc?

7 = = - ___l'ﬂ_ = _d.._ ...I._
£7 Zmp 2n, Pm2 mé  df (m) (4-8)

i.e., the new state variable z 1s Jjust the instantaneous reciprocal mass of the
vehicle,

The Lagrange Problem
The basic problem of the calculus of variations is the Lagrange problem of

determining n state functions x; (t), (1 = 1,...,n) which must teke on certain
prescribed boundary values at say t = O and t = T, such that the functional,
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;
= [ Flhi b dt (A-9)
0

is stationary. In other words, find a path through phase space, Xy (t), such that

weak variations dbout the path produce only higher-order changes 1n the functional,
I.

These weak variations of the functions Xy (t) are denoted parametrically as
follows:

xi(a;,t) = x{(0,1) + a;n(t) (A-10)

xjle; 1) = % (0,0 +a;5; (D (A-11)

vwhere the xi (0,t) are by definition the functions which render I stationary, the
@y are a set of parameters, and the T, (t) are a set of arbitrary functions which
vanlsh at the endpoints O and T. The case where this restriction 1ls removed will
be treated later. The shorthand notation,® x; =T, (t) 4% and 8xy =Ny (t)do; is
useful where the 8x; are called the variations in the functions xq (t).

If the functional I is stationary,

n aI
81 =0= Z —_ dal (A-l2)
i:l ai Gi=0
and
In
_ oF . OF
Tn (A-13)
- OF . oF
0= j; lz:l( BXISX‘ + aXi le\)dt

The first set of terms in the integral of Eq. (A-13) can be integrated by parts.

A-3



F-010352-13

n .7 n T Tn
OF o. .. oF _ d (9F
.Z.[, & 4= L5 Sxiio j;m ¥ (axi ) 8x; at (A-1k)

The first term on the right of Eq. (A-14) vanishes because the variations vanish at
the endpolnts. Substituting Eq. (A-1L4) back into Eq. (A-13) and multiplying by -1
glves

0= ['3 [& (&) - & ] syt (A-15)

Since the varlations 6xi are all independent and arbitrary, the only way Eq. (A-15)
can be satisfied is for each coefficient to vanish separately.

d /oF oF _ o ' -
-ar(-—&:)—'air =0 (I—I,....,N) (Al6)

The n Eqs. (A-16) are the Euler-Lagrange equations which, together with the
2n boundary conditions, define a path through phase space which renders the
functional I stationary. Incidentally, if theintegrand F in Eq. (A-9) contains
hlgher-order derivatlives such as Xi, the same techniques of successive integration
by parts may be used to derive the corresponding form of the Euler-Lagrange
equations. Alternatively Eqs. (A-16) may still be used 1f new state varlables are
defined (x‘rj = x;) which limit the derivatives in ¥ to first order.

Isoperimetric Problems

More complicated problems arise when constraints are lmposed on the state
variables. One of the simplest forms of constraint arises 1n the so-called
isoperimetric problems. An example would be to find the form of a planar closed
curve of given length which encloses maximum area., In the field of low-thrust
trajectory optimization, another example would be to find the trajectory between
two sets of boundary conditions which minimizes the trip time while maintaining
the integral J = fz a® 4t equal to a given constant.

The i1soperimetric problem is stated formally as follows. Find n functions
x; (t) subject to 2n boundary conditions such that

.
1=./; F (X, x;, 1) dt (4-17)
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is stationary subject to the constraint,

T

J= [ Ui, %, 1) dt = CONSTANT (A-18)
o .
SI:O:an {:-E-—--—q—-(ﬁf—)]g)(dt (A-l9)
o 1=t b 0%, dt \ox, :
and since J must be constant regardless of the variations xj,
Tn
= 0= 06 _ d (096)\7 sy gt (a-20)
8y = 0= -j; 2 [ v  df (axiH |

The variations ﬁxi are not completely arbiltrary as before since the functions
x; cannot be varied so as to violate Eq. (A-20). The coefficients of the 8x; in
Eq. (A-l9), therefore, cannot be set separately equal to zero.

Consider the Hilbert space (i.e., function space) defined by the infinite set
of all functions of t defined on the interval O to T and which have homogeneous
boundary conditions at the endpoints. The functions

i

(1) oF d ( oF )

axj  dt \ 9K
and

in

gi(f) 96 _ 4 <12§—>

ox;  dt \ox

are all members of this Hilbert space. For brevity the following inner product
notation is defined.

il

i) ex;) foi('r)Bxi('r) dt (a-21)

0

Now, interchanging the integration and summation operations, Egs. (A-19) and (A-20)
can be rewritten as follows.

™o

<f518xi> =0 (A-22)

1

"

A-5
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?n;l <gi‘3Xi> =0 (A-23)

Although the variations 8x, are not completely arbitrary as before, they are still
independent (i.e.,d x; can be changed independently of 5xJ) In order for Egs.
(A-22) and (A-23) to be satisfied, each term in the sums must vanish separately.
Therefore

G| 8%y =0 tiztm (a2h)

(@|sx) =0 (A-25)

Equations (A-25) show that 8x; is any function orthogonal to g;. But Egs.
(A-24) show that f; is also orthogonal to 8x;. Therefore f; and g; must be
related by a constant .

f. + Xg; =0 (A-26)
or
d [ O(F+XG)] _  _O(F+AG)  _ o
{———~——aki ] . 0 (i=1,...,n) (A-27)

dt

Equations (A-27), along with the constraint Eq. (A-18) and the boundary conditions,
determine the functions x; (t) and the constant value of the Lagrange multiplier
which makes I stationary subject to the constraint. It 1s straight-forward to
extend this derivation to the case of g constraints (g <n). In this case the
function in the Euler-lLagrange equations would be q
F+ 226,
z

Differential Constraints

Problems with differential constraints most frequently arise in trajectory
optimization. The typical problem is stated formally as follows. Determine n
state functions x; (t), (1 = 1,...,n) and m control functions uy, (k = 1,...,m)
which must satlsfy certain differential constraints (equations of motion),



F-910352-13

ci’j(xi,xi,uk,f)—o (j=1,..,p<n+m) (4-28)
and certain prescribed boundary conditions,
Wy (X;, i, 0) = 0,
(g=1,...,n) (A-29)
WE().(i,Xi,T) =0
such that the functional,
T

is stationary.

If any of the differential constraints, Eq. (A-28), contain higher-order
derivatives, the system can always be reduced to first order by defining new state
variables with further constraints of the form ¢= X; - X34, = 0. For the present,
let it be assumed that the boundary conditions are given as fixed numbers rather
than the more general case represented by Eqs. (A-29). The general case will be
treated later.

The control variables are treated as additional state variables mathematically.
In fact, the only thing that distinguishes them from state varlables 1s that time
derivatives of the control variables generally do not appear, although this would
be perfectly acceptable. In the derivation to follow, therefore, the notationu,
distinguishing control variables will be suppressed, and both control and state
variables will be denoted by %3 (t), (i =1,...,ntm).

If the differential constraints (Eqs. (A-28)) are to be maintained, the® 3
must not change at any point in time with variations in the state functions.

n+m

S¢; = [i‘-ﬂsxi+9$j—

o, ax; 8x;]=0 (j=1,....p) (A-31)

i=i

There exists a unique set of functions of time, Kj(t) (3 =1,.0.,p) called adjoint

A-T
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variables such that the functional,

T

0= f F e A oy dt - (a-32)

0 j=!

has a stationary value subject to no constraints for the same set of functions
xi(o,t) which make I stationary subject to the set of differential constraints of
Egs. (A-28).

A partial proof of this statement follows. For stationary J

The second integral of Eq. (A-33) is zero due to the fact that every integral in
the sum contains 8¢ . which is zero from Eq. (A-31). Therefore, the first integral
of Eq. (A-33) is also zero. But it will be recognized as the varlation of the
original functional 8 I, and the proposition is proved. The variation of Eq. (A-32)
vanishing subject to no constraints along with the p differential equations of Egs.
(A-28) determine the n state functions x;(t) and the p adjoint functionsl-j(t)
which make I stationary subject to the constraints. Note that the above proof did
not establish the existence or the uniqueness of the A.(t). Exlstence and
uniqueness, however, may be implied by the fact that the problem has a solution in
the local sense. Multiple stationary solutions which are not neighboring are
generally obtained, however, so that in this large sense the Xj(t) are not unigue.

The Euler-Lagrange equations for this problem are now obtalned exactly as
before. Define the variational Lagrangian (also called the fundamental or
augmented function) to be the integrand of Eq. (A-32).

L{X;, Xj, A, 1)

j? (A"3)+)

fl

n

+
™
g
iy

Then the Euler-Lagrange equations are obtained from §J —-GJ‘ L dt = O in the same
way as was demonstrated for the unconstrained problem.

A-8
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i 0 (i=l.. . n+m) (A-35)

In the case of a control varisble whose time derivative (generslly) does not
appear in the Lagrangian, 3L/d% = O and

—@—l‘—=o (k=1,...,m) | (a-36)
du, :

Hamilton's Canonical Equations

As in classical mechanics, 1t 1s often more convenient and advantageous to
work with a formulation that 1s independent of the velocitles. Analogous o
cla551cal mechanics, a Legendre transformation may be performed on L (x s Xi5 By

j’ t) to obtaln the variational Hamlltonian, H (x3,A 1, W, t), which is
independent of the velocities, %1 (Ref. 8).

n
oL 4
Z ox i (A-37)

Hamilton's canonical equations, which replace the Fuler-Lagrange equations in the
new formulation, can be derived from the former as follows. Define a new adjoint

variable conjugate to the state variable x;

— OL
)\' = ee— -

If the differential constraints, Egs. (A-28), can be put into the form Xy =
fi(Xj, gk,t),then the adjoint variables of the Hamiltonlan formulation, As, will be
the same as those in the Lagrangian, hj, otherwise not.

In either case the variational Hamiltonian may be rewritten,

n

H(Xi’ )‘i’ uk) t) = Z [)\i)'(i - l" )\J’ uk’ t)] (A-39)

The total differential of H can be written in two forms, the first from the

A-9
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functional form of H and the second from the definitlon of H, Eq. (A-39).

n m * .
dH =Y [-‘3-'1 dx+ 28 dk;] +2 —QS— du+ T dt (A-k0)
l -

n
) [Aidki+iid>\i] Z[BL di+ L dx]+z 8L 4, +aafL gt (A-b1)
i=]

ToLoax 1 ox, ket Uy

As & consequence of the definition of the conjugate adjoint variables,k.i, the
first and third sets of terms in Eq. (A-41l) cancel.

> ES 501%] d¥; = 0 | (A-b2)

Mso, using the Euler-Lagrange equations (Egs. (A-35)),

n n n
oL d (oL ;
"L 5y T ar () g N (8-43)

izl 1 izl

Equation (A-41) can now be rewritten.

n m
- “hdx: 4+ % ds oL oL
dH = Z=| [ )\ldx, + X d)\l] kZ: a du + at dt (A—)-l-Ll-)

Now since H (%, M4, uy, t) 1s a unique function of its independent variables 1t
must vary in a unique manner with changes in these variables. Therefore, comparing
Eqs. (A-LO) and (A-LL), the coefficients of each independent differential may be
equated.

xi:b—): (i:l,...,n) (A-)-LS)

sz =9 (o (A-16)

A-10
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OH 0L .4 (k=1,...m)
0uk Uk
(A-k7)
oH _ oL
B3t ot - (a-48)

Equations (A-45) through (A-48) are Hamilton's canonical equations and supply the
same necessary condltions as the Euler-Lagrange equations.

First Integral

When the variastional Lagragian is formally independent of the time (autonomous

system) there exists a first integral which is a constant of the motion. In
classical mechanics this first integral 1s the total energy.

di g [o dki, AL dx], oL o
at _gl[aki at * ox, df}+k§=:l duy K* Gt (a-h9)

The partial derivative & = 9..(9& ) = 0, since L is independent of ﬁk, and.%#ﬁ =
dux 4t duy t

since the variational Lagrangian does not contain the time. Using the Euler-

Lagrange equations again, §E = 9..(;% ), Eq. (A-49 becomes
xi dt Ox4

dL _fral dho, d (ouy,

ar L T B (4-50)
du . d g o g
t dtizq X Xi (A-51)

(A-52)

But the quantity in the bracket of Eq. (A-52), is the variational Hamiltonian.

A-11

0,
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Therefore,

9H <o K- CONSTANT

dt (A-53)

that 1s, the Hamiltonian is constant in time. Equation (A-U4T) shows that the
control must always be chosen such that thils constant of the motion is an extremum.
The pontryagin maximim principle asserts that H must always be maximized if the
functional is to be minimized. Of course, if H contalns time explicitly, it 1ls no
longer a constant of the motion.

Transversality Conditions

At each endpoint, n, boundary values must be given corresponding to the n
state variables. Sometimes not all of these values are specified, but the boundary
values of one or more of the state variables are constrained to lie on a surface or
curve as given by Egs. (A-29). 1In these cases the problem has additional degrees
of freedom and the boundary values can be optimized with respect to the functional
in question.

Assuming this new generality, let us again develop the necessary conditions
for the Lagrange problem with differential constraints from the point where J is
stated to be stationary.

tz
8J=0=81] L(x, X, u, A, t)dt
oo R | (A-5k)

where the endpoints t7 and to are no longer fixed and the boundary values of the
state functions xi(t) are prescribed to lie on certain hypersurfaces in phase space
and time given by Egs. (A-29). To simplify matters let us agaln suppress the
separate notation for the control variables g and regard these as additional state
variables x;, (1 = n+l,....,n+m).

For purposes of clarity, it is also advisable to abandon the varlational

notation and return to the origlnal parametric representation of Egs. (A-10) and

xi(ai, 1) = Xi(O,T) + ai'r“(f) (A 3_0)

Xj(@;, 1) = %0, 1) +a; m;(1) (A-11)

A-12
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In this more general case the variations §x;, =doy Ty (t) not only change the state
functions throughout but also change the endpoint times tl and to. Because of the
endpoint constraints,

w, (%, %, 1) =

1

[
O

' (£=1,...,n) (A-29)
Wz(xi'xi"z) =0

when x5 and 5{1 change, tl and tp, must also change to preserve the equalities of
Egs. (A-29). Therefore, the endpoint times t1 and tp can be regarded as functions
of the variatilion parameters @ j.

The stationary quality of J is denoted parametrically by

SJ =Q0= . = da; = aai 'l(ai) i (A-SS)

where t(o;) means t(Qq,0b,¢0v,Q4y).

Performing the differential indicated by Eq. (A-55) gives

n+m 2 ty n+m
ot 4o ? oL | oL - A-56
2 Lo da," + _/:' z [ ey )+ o m(”] da, dt =0 (a-56)

and

2 L '—. da; ‘ i 5@—— (t) da; llz_ -/"'z(a“ ntm

|(Qi) i=l

[a%‘(g—';,) i 3—&—, ] mih daj dt =0 (a-57)

The integrands of the last term of Eq. (A-57) will be recognized as the
lefthand side of the Euler-Lagrange equations for problems with fixed endpoints.

A-13
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It can be argued, however, that the same Euler-Lagrange equations are valid for
variable endpoints as well. Once the variable-endpoint problem has been solved the
endpoints can be fixed at their optimum values. If the problem were then solved
again as a fixed-endpoint problem one would not expect the character of the
solutlon to change. Therefore, the state functions in each case must satisfy the
same set of differential equations, namely the Euler-Lagrange equations of Egs.
(A-35). The last term of Eq. (A-57), therefore, is zero and Egq. (A-57) becomes

n+m n+m 2

2

aL

L-Z dad +3 2= mtde| -0 (a-58)
| =] aXI ‘l

For substitution into Eq. (A-58), the differential of Eq. (A-10) is now taken
and rearranged.

X ox;
dx. = —*+ . =
¥ Ja, da;, + St dt
(A-59)
n#t)d% z dﬁ —kidt
Equation (A-59 is now substituted into Eq. (A-58), and using the fact that
n+m a_t
at = Ei'g—- d%; , Eq. (A-58) becomes
n+m +
a . nrm aL 2
L - ; dt + = -
[ ( |Z| o ) .Z| e dx; ]] 0 (A-60)

Equation (A-60) is the general transversality condition for the Lagrange problem.
The dt and the dx; at polnts 1 and 2 represent variations in the time and the state
variables at the endpoints. These are not all independent, however, but are
related by the Egqs. (A-29). Through these equations the set of variations dt, dxy
in Eq. (A-60) can be reduced to a smaller set of independent variations. Then, in
order for the transversality condition, Eq. (A-60), to be satisfied, the coeffi-
cients of each of these independent variations must vanish. The resulting
equations supply the necessary conditlons for optimality of the variable boundary
values. Incidently, the varlation, dxy, of any state variable for which a fixed

boundary value is specified, is zero, and the coefficlent of dx; does not have to
vanish.

A-1L
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A brief illustration of why Eq. (A-60) is called a transversality condition
may be useful. Consider the simple problem of finding the shortest path between a
point and an infinite plane. It is known, of course, that the path is a
perpendicular straight line between the polnt and the plane. If this problem were
solved by calculus of variations, with the final point variable but constrained to
lie on the plane, the Euler-Lagrange equations would admlit a straight line solution
while Eq. (A-60) would indicate that the path should be perpendicular (or trans-
verse) to the plane at the final boundary. The same thing is true mathematically
for more complicated hypersurfaces.

In the Hamiltonian formulation the transversallty condition assumes a very
simple form. The coefficient of dt in Eg. (A-60) is recognized as the negative of
the Hamiltonlan, and the coefficients of the dx; are just the adjoint variables,

A i, which are conjugate to the respective state variables x;. The Hamlltonian form
of the transversality condition is thus

ntm 2
[-Hdt +3 dx] =0 (A-61)

i=1 |

Weierstrass-Erdmann Corner Conditions

It may be that one or more of the state functions (or their time derivatives)
which comprise an extremizing path undergo a finite number of discontinulties. The
points at which these discontinuities occur are called corner points, and at corner
points the Weierstrass-Erdmann corner conditions must be satisfied. By treating
the corner points as internal boundaries where the two adjacent solutions must be
matched, the corner conditions may be simply derived by using the development just
presented for transversality conditions.

To be specific, consider the case where two corner points occur. The times
of occurrence, Ty and Tp, depend of course on the path chosen which is again
represented parametrically by Eqs. (A-10) and (A-11). Therefore, T1 and To are
functions of the n+m paremeters® ;. The functional J, Eq. (A-32), can be rewritten
as the sum of three integrals

) Tl(ai) -€ Tz((!i) -€ T
g=tim[ [T Ldt+ Ldt + L dt ] (A-32)
€e=0" "0 T (a) +e Tla)+e
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Again for stationary J,

J=0=Y 2 (g,
& Oa; 49 (A-55)

Employing the same process as that of Egs. (A-55) through (A-61) on Eq. (A-32)
above, one obtains

n+m T —€ n+m T —€ n+m T

[-+ at+3 Xidxi]c: + [—Hdt+§| Xidxi]:+e+[-H dt + 3 Adx ]He: 0 (a-62)

| 2

Since there are generally no relationships between the variations at the end-
points and those at the corner points, the two terms at O and T can be separated
from the rest of Eq. (A-62) and must vanish independently, giving the previously
derived general transversality condition, Eq. (A-61). The variations on each side
of the respective corner points must be equal, l.e., dt(Ty-€) = dt(Ti+e), dx;(T1-¢)
= dxi(Tl+e) and similarly at Tp.

Therefore, Eq. (A-62) can be rearranged to glve

n+m T-€ n+m To-€

[-—H dt +i:zl )\idxi]T+e + [—-H dt +§I )\idxi] =0 (A-63)

| i T, te€

Since no relation exists between the variations at Tl and Ty, the two terms must
separately vanish. Also since the variations on each side of the respective corner
points are equal the respective coefficients must also be equal in order to satisfy
Eq. (A-63). Thus H(Tp-¢€) = H(Ty+e), A\;(Ty<) =X;(Ty+¢€), (1 =1,...,n*m) and
similarly at T,. The fact that the Hamiltonian and all adjoint variables are
continuous constitutes the Welerstrass-Erdmann corner conditions. The extension

to more than two corner points is obvious.

The Pontryagin Maximum Principle

Two things that cause corner points are inequality constraints and discrete
control variables. Only the latter are considered in this report. Consider the
case where a certain control variable Uy 1s not continuous but may take on any one
of a finlte set of discrete values ﬁs. According to the maximum principle the
proper cholce for w, at any time is
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uk:|ngx}4(x“ N, lb,f)' (A-6L)

that is, the discrete value £_ which maximizes H at any point 1s the proper choice.
In the limiting case of continuous control variables the maximum principle is
consistent with_BHﬁBuk = 0 and the positive definite test of the Welerstrass excess
function.

The Problem of Mayer

Up to now the development has centered almost exclusively on the Lagrange
problem, although it has been shown earlier that the Lagrange problem can be trans-
formed into a Mayer problem by simply defining a new state variable. It is
reasonable to expect, therefore, that the same Euler-Lagrange equations will be
valid for the Mayer problem.

That the same Fuler-Lagrange equations are, in fact, valid for the Mayer
problem is now shown. Starting with the original Lagrange problem of extremizing
the functional

T
1= [ Flx, xu,dt (i=1,...,n+m) (4-65)
¢]

subject to the differential constraints

¢j(ki,xi,f)=o (j=1,...,p<n+m) (A-66)

a new state variable,Z , is defined which obeys the new constraint

Z-F(X, x;, 1) =0 (A-67)

Call the new state variable the (n+m+l) varisble (% = x4;47) and the additional
constraint the (p+l) constraint, @p+q.

As shown before, the problem can be transformed into the Mayer form,
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o (A-68)

but the Lagrange form shall continue to be used in order to meke use of previous
developments. (Note that the new state variable Z 1s usually denoted by G or J in
the literature.)

As before, the variational Lagranglan is formed.

ptl

L()‘(i,Xi,)\j,T‘)z'Z-i-jZ::‘ )‘J¢J (A-69)

Since this 1s still a Lagrange problem the same FEuler-Lagrange equations hold.

d ._QL'_ - _a_L__ = i= +
ET(a'xi> ax =0 Ushoankm (A-70)
d(oLy o |
(55) 5 = © (A1)

Inspection of the p+l constraint, Eq. (A-6T), and the Lagrangian, Eq. (A-69),
reveals that L does not contain % so that the second term in Eq. (A~T1) is zero.
Upon substituting Eq. (E-69), the first term becomes

-d‘-j? (1 +Xpy) 8O (A-72)

or

Ap+1 = CONSTANT (A-T3)

Since neither % norZ appear in any of the other Euler-Lagrange equations
(Eqs. (A-T0) for i < n+m), or equations of constraint (Egs. (A-66) for j < n+m),
the equations involving £ and A p+1, Eas. (A-6T7) and (A-T2), are completely
uncoupled from the rest of the system and Eq. (A-T3) is a trivial result. With no
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loss of generality or without changing the problem in any way, the constant of
Eq. (A-T3) can be chosen to be zero and the Z can be deleted from the Lagrangian,

P
L(X“ Xi.; )\j7t) = ’ZI: )\.|¢J (A"'T)'!‘)

and the Euler-Lagrange equations for the Mayer problem are Egs. (A-T0) for i = 1,
.'.’n-*m.

Using the same transformation device, the general transversality condition for
the Mayer problem can be derived. Again the Lagranglan 1ls used for the corres-
ponding Lagrange problem,

L%, % Nt =2 + 20 Ny (A-T5)

where the prime is introduced to distinguish Eq. (A-T5) from the Mayer form of the
Lagrangian which has been shown to be equivalent as far as the Buler-Lagrange
equations are concerned. Since for the time being we are still dealing with a
Lagrange problem with the functional in the form

I= z dt (A-76)

where % = F(x;, %x;, t), the previously derived transversality condition, Eq. (A-63),
is valid.

n¥mtl / n+métl / 2
/ al . oL
[(L -2 i N) dt +1217%: dxﬂ =0 (A-7T)

iz] i i l

Substituting Eq. (A-T75) for I' and denoting the Mayer form of the variational

J

b
Lagrangian by L = Zi)\j 3, Eq. (A-T7) becomes
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n+m L nim a

2
{ [2+L+)\p+l¢p“ —uzl gx—x, =441 z]dt + 2 ExL, dx; + (14+Xp40) dz}lzo (A-78)

Equation (A-T8) can be simplified, (@ pHl = 0),

2

aL )
il (519

n+m n+m
L

dz +(L - = ;) dt +
[ azl ox; ! [

Equation (A-T79) 1s the general transversality condition for the Mayer problem.
Again thils can be transformed into the Hamlltonlan formulation.

n+m 2
[dz—HdT + ) xidxi] =0 (2-80)
izl i

If there exists no coupling between 4 and the other state variables, dZ = 0
separately from the rest of Eq. (A-80).
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Appendix A Nomenclature - Part I

Thrust acceleration
Exhaust velocity
Denote functional forms
Variational Hamiltonian
Integral functional

Variational Lagrangian (also called the augmented or fundamental
function)

Total vehicle mass at time t

Power available

A given instant of time

Time

Control variable

Position coordinate

Auxiliary state variable

Function variation parameter

Denotes variation of function x(t)
Small quantity used for taking limits
Arbitrary function of time

Thruster power conversion efficiency
Lagrange multiplier

Denotes functional form of a differential equation of constraint

Denotes functional form of equation that the boundary values
must satisfy
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APPENDIX A - PART 2

VARIATIONAL FORMULATIONS OF FOUR POWER-LIMITED
TRAJECTORY AND PROPULSION-SYSTEM OPTIMIZATION PROBLEMS

Detailed Description of Problems

The variational formulations of the problems are presented in the following
segquence:

Problem 1: Three-dimensional trajectory and control optimization with the thruster
constrained to constant exhaust velocity on-off operation. The power avagilable is

a given function of position and time corresponding to decaying radioisotope power
or solar power. The objective is maximum final mass fraction for given values of
powerplant specific weight, powerplant fraction, and exhaust velocity. The boundary
conditions correspond to (a) planetary rendezvous, (b) planetary flyby, (c) flyby at
a given radius, and (d) orbital transfer.

Problem 2: This problem incliudes all of problem 1, but in addition the powerplant
fraction Wy and the exhaust velocity C, as well as the trajectory and the associated
steering program, are to be optimized. The objective function is maximum payload
fraction, which is defined to be everything that is left at the end of the mission
except the powerplant, thruster, and the structure.

Problem 3: In this problem two separate propulsion units are used, one before and
one after the coast period. The exhaust velocity and powerplant fraction of each
unit are optimized with respect to final payload fraction.

Problem L4: This problem is the same as problem 1 except that the thrust-
acceleration vector is constrained to make a constant angle with respect to the
radius vector. One constant angle is allowed before coast and another after coast.
These two angles are to be separately optimized with respect to maximum final mass.

Problem 1

Maximizing the final mass fraction is equivalent to minimizing the objective
function

Z(T) = ~Kp(T) = ~Kpr (A-81)

where K is an arbitrary positive constant. Let the power in the exhaust beam be
denoted functionally by

p = -1 c?= me Pot(T,t) (a-82)
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where T, is the thruster efficiency, P, is the power available to the thruster at
Earth's orbital radius, and f is a given positive function of position and time.
The time rate of change of the mass of the vehicle is given by

LM __ 27cPof __ 27pw
P’(T) = mo - mocz - a Cz

f (A-83)

where & 1s the specific mass of the powerplant based on the initial power Pg.

The differential equations of constraint, corresponding to Eqs. (A-28), are
now given,

i T Xi+3 (i=1,2,3) (A-8k)
ta = 220 () sin6 cos- o (4-85)
- 22 (1) sin g sin g -2 (4-86)

= 82T (1) cos - =2 (A-87)

o ==bfB(t) - ww & (t-Tw) (A-88)

Here, the state variables x; (i =1, 2, 3) are Cartesian p031t10n coordlnates, the
Xj43 are velocity components, and W is the vehicle mass; b = 21 uw/a C and the
control variables (denoted by u, in Appendix A, Part 1) are® ,p, andB (t). The
latter is a discrete control variable corresponding to turnlng the thruster on and
off., '

1 in powered regions
B(t) = (4-89)

0 in coasting regions

The second term in Eq. (A-88) describes staging at time Ty. In this termuy is the
mass fraction that is discarded and 8 (t-Tx) is a Dirac delta function.
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The variational Hamiltonian (Eq. (A-37)) is now formed.

3 .
H = :{:l [)\i Xi+3—)‘i+3%] + P%ﬂg_ [()\4cos¢+)\5sin¢)sin6+x6c059]
(A-90)
= hu [FB e Bt -T)]

The control variables can be determined in terms of the adjoint variables through
the use of Egs. (A-L47) and (A-64).

L

¥ =0=- g—%@- (Agsin® - XgcosP)sinf (A-91)

%2— =0z —Gﬁf-é[(xqcosdn Assing)cosf - xssine] (A-92)

Equations (A-91) and (A-92) are satisfied if

>\4 . A5
cos¢p = t——2 sin® = & ——— A-9
VANEEN S+ A2 (4-93)
and
cosg = + e sinf = +M
ST Tp co T p (A-9h4)
where - Mg
PE|As
,)‘5

Investigation of the Pontryagin maximum principle, Bq. (A-6L4), indicates that the
plus sign should be chosen in Egs. (A-93) and (A-9k4).

The variational Hamiltonian, Eq.(A-90), can now be rewritten in more concise
notation.
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3 . :
H= Z‘[Mx;u %]+ bfﬁ[% - )‘/‘]-)\F’ Lad(t-Tyx) (A-95)

+

When the discrete control variable B (t) changes from 1 to O at a particular point,
say Tp, the time derivatives of the state variables xj,3 (i=1, 2, 3), i.e., the
acceleration components, suffer discontinuities as shown by Eqs. (A~94) to (A-98).
Thus a corner point occurs at T; and the Welerstrass-Erdmann corner conditions
dictate that the Hamiltonian and all adjoint variables must be continuous across
this point. Denoting by (-) the infinitesimal region just before the corner point
where P = 1 and (+) just after the corner where B = O,

{2 Dmivarea 8] [ ] nmnn flr-ma0)
(A-96)

3 X:
= Z[)‘ixus_)‘ﬁsr—%']—)‘#/“‘* 8(1—T*)}+

(=

Since there is no discontinuity in any of the state variables, x i7 X543 and ¥, and
all of the adjoint variables must be continuous, the only way for Eq. %A 96) to be
satisfied is for

Y

%p_ —Apu (A-97)

to vanish at the corner point. The function Y is called a switching function

(Ref. A-1) because it governs the discrete control variable B as follows. It is
seen in Eq. (A~95) that the second term in the Hamiltonian is bfBY. Note that b is
a positive constant and f is a positive function of position and time. The maximum
principle (Eq. (A-64)) states that B should always be chosen to maximize the
Hamiltonian. It is guite evident that

1 when ¥ > 0
B(t) =< (A-98)

OwhenY < O

is the proper choice.

The Hamiltonian canonical equations (Egs. (A-45) and (A-46)) will now be deter-
mined in second-order form except for that for hu.

gH
OXij+3

Niys = - = =i, (i=1,2,3) (A-99)
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Niaz= -k = FITER (A-100)
N ~Ni+ 3x| 3 c
Nies = ;33 + (:l ;‘Z Aias Xk +b3“g‘,&”<1ﬂ—w), (A-101)
=]
A = - g*; = b‘;ff?p (A-102)

The three Egs. (A-101) and Eq. (A-102) are the complete set of Euler-Lagrange
equations. Together with the equations of motion,

X = biLfB Xti;s _ _)r(%_ (i:|)2,3) , (A-103)
and
r o= —-be',U-*S(T"‘T*) ) (A—88)

and prescribed boundary conditions, they determine the trajectory and thrusting
program. The two first-order equations, Eqgs. (A-102) and (A-88), can be reduced to
one second~order eguation by differentiation and substitution.

There still remains the guestion of boundary conditions on the state and
adjoint variables. The boundary conditions depend upon the specific problem at
hand (i.e., whether it is a planetary rendezvous, flyby, etc.). Assuming the
rendezvous case with a single intermediate coast, for the moment, the following
development indicates a condition on the primer vector magnitude at the two inter-
mediate switching times, Ty and Te.

Integrate Egs. (A-102) and (A-88).

(1) n—b[f 7,7) B(z)dr - p*fs T -Tu)dr (a-104)

Au(t) = )+ bcf (yr f Jp dr (A-105)
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Since Egs. (A-101) and (A-102) are homogeneous in the adjoint variables, the
magnitude of the primer vector, p, and the mass adjoint variable )\.u , may be arbi-
trarily scaled at any point, but not independently. In what follows let p(T;) = py,
u(Tl) =Wy, ete.

C
Y, s —-——ﬁ‘ “Au=0 (A-106)
cp '8
Mt = it = A +bo [t (A-107)
0
C
Vo= "/L—pz:a——)\/,l-g =0 (A-108)
Te B
_CP2 _ fop -
Aao= T, ° Apo + bcél'?—-df (A-109)

SinceB (t) = 0, for T; <t < T, the integral terms in Egs. (A-107) and (A-109) are
equal. Therefore, the right-hand sides of these two equations are identical and
P . P2
— = A-110
Hy H ( )
If no staging occurs during the coast period (i.e., ifuy = 0), then the primer

vector magnitudes at the two switching times are equal, a well known result
(Ref. A-2). If staging does take place,

e
%l; - /'ﬁ‘;"'* (A-111)

which indicates that the first switching time would occur earlier. The required
scaling on Ay at t = O is given by Eg. (A-107),

.
Apo = f—ﬁ% (A-112)
o]

with arbitrary scaling on p at the initial point. Equation (A-112) shows that as
T, decreases the scaling A (0) increases. This directly increases A, at all points
in time. Equation (A-97) shows that if Ay increases everywhere the switching
function will become more negative and the second switching time To will increase.
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Thus the staging during the coast period has the effect of increasing the length of
the coast, which is certainly reasonable.

Finally, the boundary conditions for the four cases must be considered. The
first case of planetary rendezvous has already been discussed. For this case
specific boundary values are given for the position vector x; and the velocity
vector %X; at both endpoints. This case usually results in one intermediate coast
period and two switching points, although more than one coast period is certainly
possible. In the latter case Eq. (A-110) holds over all coast periods and the mass
(Eq. (A-88)) requires an additional 8 function term for all staging points.

For the case of planetary flyby the general transversality condition,
Eq. (A-80), is employed.

3
- Kdp +,Z| [Ai dXi+ Aj.3 dxilrs}T‘*‘ Apuq dpr =0 (A-113)
=

The final position is fixed (dx; = O) but the final velocity is open (dx1+ #0).
Furthermore, Eq. (A-113) must be valid for any arbitrary set of 1ndependent weak
variations. This is possible only if the coefficient of each independent variation
separately vanishes.

Niss(T) =0 (i=1,2,3) (A-114)
A (T) =k (A-115)

Bguation (A-llh) states that the primer vector at final time vanishes, while

Eqg. (A-llS) implies an additional scaling reguirement onhﬁh. It will be recalled,
however, that K is an arbitrary positive constant, so Eq. (A-115) is satisfied by
any positive final value of iy, a fortunate circumstance since Xu is already com-
pletely determined by Egs. (A-105) and (A-112).

For the flyby case p(T) = O. Since A, is everywhere positive, Eq. (A-97)
shows that the switching function, Y, will go negative and remain negative in the
latter part of the trajectory. The final part of the trajectory, therefore, will
always be a coasting region for the flyby case.

In the case of flyby at a given radius, R, the boundary condition corresponding
to a solar probe, the location of the final boundary on the sphere of radius R is
determined by two variables which are most conveniently defined to be the usual
spherical polar coordinate angles © and . In terms of these variables, the
Cartesian coordinates are

X, 8 Rsinfcos ¢ (A-116)
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X2 = Rsindsing (A-117)

X3 = Rcos 6 (A-118)

The transversality condition, Eq. (A-113), is the same as the previous case
except that the final position is not fixed and the dx; are no longer zero. The
variations dx; are not all independent, however, but are related through
Egs. (A-116) to (A-118).

dx, = R [0059 cos ¢ d8 —-sinb sin4>d¢1 (A-119)
dx, 8 R [cos@ sin $d8 +sinf cos¢ d¢'] (A-120)
dxz = -Rsinf db (A-121)

Substituting Eqs. (A-119) to (A-121) into Eq. (A-113) one obtains Egs. (A-114) and
(A-115) as before, and in addition

(\icos8 cos P+ Xz cos8 sing —rzsing)dB +( =\ singsing+ \, sin Bcosp) dp =0 (A-122)

Since d0 and d¢@are independent variations, their respective coefficients must
equal zero.

A COS p+ Az sing = A3 tan | (A-123)
A (-sing)+ A2 cosd =0 (A-124)
Using Cramer's rule,
A= A3tanBcos ¢ (A-125)
X2= A3 tan @ sin ¢ (A-126)

Equations (A-125) and (A-126) can be converted back to Cartesian coordinates and
Egs. (A-99) are substituted for the },.

Ao Ae X1 (A-127)
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Ao _ As X2

s Xe T Xs (A-128)

The final boundary condition on position has three degrees of freedom.

Equations (A-127) and (A-128) provide two conditions. The third condition is pro-
vided by

3
> xi® = R? (A-129)

where R is the given final radius.

For the case of orbital transfer in a given time, it is desired to depart from
the best point in the initial orbit and arrive gt the best point in the final orbit.
At each end both the position and velocity of the given orbits are matched.

A Keplerian orbit in space can be speecified by 5 parameters. In addition, a
position in the given orbit is specified by one parameter, the central angle § .
Once the orbit is specified, the position and velocity vectors of a certain point
in the orbit are functions of the single parameter §.

xi = i), xi= gi(&) (i=1,2,3) (A-130)
The general transversality condition for orbital transfer is
—KdI-LT + z i_d—E— + )‘i+3-d—€— E + )\I"'Td/'LT =0 ) (A-lSl)
i=l 0

The variations d% at the initial and final boundaries are completely independent.
Therefore the respective coefficients must vanish separately.

z ()\i+3_q_9_‘_ - X]+3_._‘ )i‘ =0 (A-132)
[Fl dé d€¢ +=0

3
) d . [ df|
[g <)\I+3—J§—‘— - i+3 'a'—E-—>} =0 (A_l33)
tsT

Equations (A-132) and (A-133) along with Egs. (A-130) are sufficient to determine
the values of initial and final § and thus if x; and %;. In case only one end is
open Egs. (A-132) and (A-133) are used and all the boundary values on the position
and velocity vectors must be given for the other end.
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Problem 2

Briefly, the only difference between this and the last problem is that now two
constant parameters, the exhaust velocity, C, and the powerplant fraction,M, , are
to be optimized in addition to the trajectory and thrusting program, and the pay-

load fraction is to be maximized instead of just the final mass. The problem again
can be most conveniently expressed in the Mayer form with the objective function.

2= <K | p(D)- pw-prCin) - ps] (A-13h)

to be minimized where X is again an arbitrary positive constant, ¥ 1s the thruster
fraction (any continuous function of c andkﬂq); and Mg is the structure fraction.

_ The differential constraints, Eq. (A-28), for this problem are

X| = Xi+3 (i=1,2,3) (A-135)

_ 2punfFHBW Nas _ xi

i+3 - awC K (f) ) T3 (A-l36)
2wt 1) A()

.. :WCZ B - pad(t-Ty) (A-137)

=0 (A-138)

fiw = 0 (A-139)

where the results of Egs. (A-93) and (A-94) for the control variables have already
been included in Egs. (A-136).

The Hamiltonian, Eq. (A-39), can again be written in the concise form

3
H=2. [M Xi+3 = Aj+3 l"_]+w — A pn8(t-To) (A-140)
=1 r3 awCZ

where Y is the same switching function as before.

= Lp_ by A-Q
Y m H ( /T)
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Application of the Pontryagin maximum principle, Eq. (A-56), again shows that
1l forY>0
B(t) = (A-98)
0 forY< O

Thé Fuler-Lagrange equations,

o Ni+3  3Xi S 2pwle 9t _
Maz =3 tT3 jzzlxhsxj*_a;,_c? OXi vh (A-241)
Zﬂwncpr
o2 (A-142)
w-H

are the same as the previous problem. In this problem, however, there are two
additional Euler~Lagrange equations for C and b, .

SR i
Ac = 3¢ (A-143)
, ___OH _
Xy = Ey (A-1h4)
These equations may be integrated formally.
T
Ac(T) = Ae(0) = - f%% dt - (A-115)
0
- dH
Mg (T) = Apugl0) = = fm dt (A-146)

The general transversality condition for this problem are
3 T
dz + [—de + 2 (Nidxi+ Ai+3dXie3) + Apdp + Aed + de#w]o =0 (A-147)
iz

For the case of fixed-time rendezvous the variations dt, dx; and dx;,3 are all zero
at each end. Let the subscripts O and T denote the variation at the respective
endpoints. Equation (A-14T7) can be rewritten as
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dz + de,LT + Xep dCp — AgodCo + x#wT dp ot =X .wo dpye =0 (A-148)

Equations (A-138) and (A-139) insure that C and p are constant throughout the
trajectory. Therefore

dCo = dC7 = dC ; dpyo = Ayt = dpew (a-149)

Furthermore,

op p
dz = K(duy + S dc + S du - dp ) (A-150)

Substitution of Egs. (A-145), (A-146), (A-149), and (A-150) into Eq. (A-148) gives

OkE Bk _ dH aH
k((dw + S5 de+ s G dpr ) + A 7 duy —dc 6[-5—— Fhgr =0 (a-151)
and collecting coefficients of independent variations,
a,“'F SHF 9H 4 )
(N7 ~K)dug + [ “f at}dc +[k(1+ a,Lw) ofa dt] duy =0 (a-152)

Each coefficient in Eq. (A-152) must vanish separately. The vanishing of the first
coefficient shows that Ay; = K. If this relation is substituted into the last
coefficient one obtains

;
[)\/,LT<I+ a*"’>_ 9H df]dpw+[>\#7%—5 - Ti’-“—df}dc =0 (A-153)
Obw 4 OHlw dc 3 ocC

It remains to determine the two partial derivatives in Eqg. (A-153).

S - 20l vB (a-154)
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Let us define a new variable b, such that

fio = - 2PwnctB
GwC2

Qc'will be recognized as the rate of mass loss of the vehicle gssociated with

propulsion and not including the mass loss due to staging during coast. Then

(A-155)

OH . _ ff&(?i_x#) (A-156)

Now the integration indicated in Eq. (A-153) can be performed,

.
OH fi c L [hehn A-1
fdpw dt = f £p gt+ w! cAHdt, (A-157)

and integrating the second term by parts gives

T T '
1 .
f%dt <[ o 44 +TL‘-G[#CMU~TL%‘-Of#cht (a-158)

Inspection of Eq. (A-142) shows that

AcCp

Ao = = (A-159)

/,LZ

Equation (A-159) is substituted into Eq. (A-158).

T T T
[ o] & ol ) o

For 0 = t < Tk, Be = W and for Tx < t < T, ¥ =¥ +WUx. The last term in
Eq. (A-160) becomes

;
—E—w—fﬁcp(% - ) dt = ”ﬁ%‘ﬁl‘:p(ﬁ“'ﬂdf

C#L*

f /-"2 dt = f‘—z‘pdt
Tx

A-34
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The second equality of Eq. (A-161) is valid because from the staging time Tx to the
end of the coast period Tp, &, is zero, and after Tp, p = i . Equation (A-160) can
finally be written as

OH gy . 1 Aoy _2%*‘*  pt 3
Ja#w dt = iy [(F’T'H“'*) A xl‘o] T P’T dt (A-162)

Turning attention to the other partial derivative in Eg. (A-153)

L OH _ _ a4rwncfyB | 2pwnctyB | 2pwncfpB (A-163)
ocC awC3 awC? awC?p
on __ 2HwcfB cn’\(CP _, \ _ cP i
50 © 2, C3 [(2-1i:>( m Xp) T (A-16L)

where it is assumeg that the thruster efficilency ﬂ is a function of exhaust
velocity, C, and Te represents dTL/dc

Equation (A-153) can now be rewritten as

oK | 27 & pf
A o 0 RN —A el %
{ #T(l + a,“'w> ™ [('“'T + By ) AT P'o} + awC 3 df} dpy

T2

(A-165)
T
OHF | 2HwTc Me\(CP _y,\-CP N
e G - 2 (o~ ) (B ) - P etnar} e <o
0 .
The two variations are independent so the coefficient of each is zero.
_ OHEN o . 2HuTcH PfdT
L7t r (14 2 ) ] er = hsg = 2E0T */ (A-166)
OHE 2w C7e\ [ CP CP] -
AT o = e ff[( )(T—Xp) =2 |B(1) dt (A-167)

Equations (A-166) and (A-167) determine the optimum values of C and i, with
respect to payload fraction. Note that Eq. (A-166) depends upon uy, the fraction
of mass dropped in staging. This is very reasonable. The more mass that is dis-
carded during coast, the less will be the propulsion requirement from Tp to T and
the optimum values of C and ¥ will go up and down, respectively.
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The scaling of the adjoint variables is the same as in Problem 1. The primer
vector magnitude, p, is scaled arbitrarily at the initial boundary and the switching
times T and Tp must be such that

fﬁ—: Pz (A-110)
) H2
Once again w(t) and Ay(t) can be determined by numerical quadrature.
2Hy M
pt) =1 -2 Wcchf(' )B(r)dr - ;L*fs(r 1) d (A-168)
1 -
_ 2Hw e f(v,r)pB(r) _
()= duo + o8 [ DLTEEE de (a-169)

The scaling on XM is determined by the fact that the switching function is zero
at t = T4.
1

(1)) = SR (A-170)

A (0) = cp, _ 2w ﬂrf)pﬁﬁ

Z awC J T 2 at (a-171)

This completes the formulation of Problem 2 for fixed-time planetary rendezvous.
Combining Egs. (A-133) and (A-136), the equations of motion can be put into the
second-order form of Egs. (A-103). These equations, along with Eq. (A-168), are
the equations of motion. The adjoint equations are Egs. (A-141) and (A-169).
Boundary values are given on the position and velocity vectors at both boundaries.
Optimum values of c and W, are determined by Egs. (A-166) and (A-167).

For the other cases of planetary flyby, flyby at a given radius, and orbital
transfer the transversality conditions are the same as before.

Problem 3

In this problem the staging during coast consists of dropping the powerplant
and thruster used during the initial powered phase as well as the empty propellant
tank. Since two separate thrusters and powerplants are used in the two powered
phases, there are now four parameters to be optimized: Py sMyy » C1 and Cz. The
subscripts 1 and 2 refer to the first and second powered phases, respectively. The
new objective function is the final payload-plus-structure fraction.
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zZ =-K {#T - Fwz— Fe2( Fwe, Ce) —/“s] (a-172)

The rate of mass loss due to thrusting is

2 ey Bwy, F(TT)B(1)
frg = - 2 eyt (A-173)
Wy My
where
1 for t <Tg
v ={ (A-1T7h)
2 for t > Tx
The total rate of mass loss due to both propulsion and staging is
Pz g - [P—wn + He(Cy, Hun )+ #*T;]S(T—T*) (T S TR <T,) (A-175)

The subscripted powerplant specific weight ¢, in Eq. (A-1T73) allows for the
two powerplants uwl and u,, being different in this respect. The term T, in
Eq. (A-175) represents an empty propellant tank, the mass of which is proportional
to the propellant required for the first powered phase.

In addition to Eq. (A-175), the other differential constraints for this
problem are

From Eags.

Xi= Xies (i=1,2,3) (A-176)
Xis3 = % Cy A,‘,“ - —% (A-17T7)
Cy=0 (A-178)

fwy =0 (A-179)

(A-175) to (A-199), the variational Hamiltonian, Eq. (A-37), is formed.

3
i 2N, twy, fB [P
H = gz::|[)\ixi+3_)\i+3%]+ Gy Wy [ L —-)\,u,]

r awCi2 = (A-180)

—Ap ["'wn*‘ HFe + ,LL*T|]8 (t-Tx)

A-3T



F-910352~13

Except for the new subscripts V the Euler-Lagrange equations in ki+3 and lu are
exactly the same as in Problem 2.

v o _ Nz 3% &, o, 2Hwy My of CyP .
Xi+3 = r; + 5 j§|)\J+3 Xj+ awyCyz ax; B( ;Z -—)\,u) (A 181)
N 2 kM ef PB
= - 2
e awy Cy K2 (A-182)

Again the continuity of the Hamiltonian at the corner points T; and To requires
that the switching function

CyP

SRV (A-183)

Y = -

must vanish at these two points. Referring to conditions at Ty by subscript 1 and
similarly at Tp,

=GP

7o “Az =0 (A-18M)

T
2HwiMer ' Pf

_CiP i
Moy == =hpc ¥t T o T dt (A-185)
: o}

- CePe s )

%2 =4 H2=0 (A-186)
2k el P 2 wew [ PEB

_CoP Hwi Tl KEwiey _

Ape = iy - Apc + 2 G, Lz dt + TwsCo — dt (A-187)

The last term of Eq. (A-187) is zero since B = O for Ty S t <T,. Since the right-
hand sides of Egs. (A~185) and (A-186) are identical, the left-hand sides may be
equated.

CiPy _ C2P2 ' -188
Ky Ky (4-188)

Equation (A-188) corresponds to Eq. (A-110) for problem 1.
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The Euler-Lagrange equations for Cy and W, are

XCV = gg )\/,va = - az:y (A-189)

which can be integrated formally over their respective regions.

AeilTx) = Xei(0) = Jdc; (A-190)
T
XCZ(T) - )\cz(T*) == gg dt (A'l9l)
Tu ‘
T*
Apowt (Tn) = 2 (0) = = 5% g (8-192)
0
Mewz (T) = Apwz (Ty) = -—f aa:wzd* (A-193)

Regarding Ty as an internal boundary the general transversality condition is
written

¢ ]

T T*‘_f
dz +[-Hdt+ 3 (Ndxi+ Aj,s dxius)] +hude
(¢} [s]

(A-19k)
T Ty—€ T Tx—€ T

T (o
xt€ 0 Tyte€ )

T+ €

In the case of fixed-time rendezvous dt = dx; = dxj;3 =0 at t =0 and T so
the second term in Eq. (A-19%4) vanishes. Differentiation of Eq. (A-172) gives

dz = K<dl‘w2 + %f;t;a dCz + g:t:‘; dpyp - dpy (A-195)

At t = Ty the mass fraction W decreases by an amount (Hw, + Wry + Bx T ), i.e.,

p(Txte) = p(Te+ e ) —( g+ e HHLT)) (A-196)
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and

; |
d4C, - ~FL dy (a-197)

g
dCl ay_w‘ wi

Equations (A-178) and (A-179) ensure that Cy, Cp, w,, and p,, are all constant in
time. Therefore

du(Te t€)= dp(Tu-€)=dp,, -

dc, (0)= dc,(Te) 3 dC,(Tw) = dc,(T);

-198
dpy, (007 dpayy (o) 5 dpa, (To) = dpy, (T) (oa50)

Substitution of Eqs. (A-190) to (A-195), (A-197), and (A-198) into the trans-
versality condition, Eg. (A-194), gives

ou Ope, op
F2 Fee _ __R
K (dpye * e dCe + g5 duy, d,LT)+x,“d,¢| (G, = gy =5 4G i, P )
Tx
- aH - OH
+ )\ L0 d d =2 dt
pr dpy = dCy fO aCi f Ce -/.T* oC, d (A-199)
. T* O _ T OH -
dpy, . B 4t duy, fT* B dt=0
and collecting coefficients of independent variations,
(Aur —K) d +[>\—f— 28 g4 dc+Kd“F2-fT"Hdt dc
KT e S R T ! dcz  JmdCe 2
(A-200)
ap T
o (10 g2 ) - 52 df]d [ Pl 1 G .1 df]d - 0
[/“( ) fapw, pu | <+ a#wz) fn Oty Fwa
The partial derivatives in Eq. (A-200) are now determined.
I
OH _ _ 27mcr FuyfB [(2_ C’7cV>(Cvp “\ )__ Cvp]
ac, ~ Qyy €3 ey Lo Ly IS (A-201)
0K ‘
_)\'u 8 —a-a- S(f-T*), (1/=|,2)
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2
OH . 27cyfB (czp - x#\)-x#sm (|+ -9-’-”-”'—‘->8(f—T,) (v=1,2)  (A-202)
Opwy waCiz; K a/‘LWI

where 6\,1 is the Kronecker delta.

Since the first term of each of the partial derivatives contains B, which is
zero between T and Tp, the limits on the integrals of these terms in Eq. (A~200)

can be changed from O-Ty and Tx-T to O-T; and To~T, respectively. The contributions
of the second terms are

Tw
Opry Oper O
- T, - R YnLali R A-20
Jx# 30, ST dt = Ap(TaZ e (4-203)
Ty 3 3
HFi FF
- Ayl i+ ”)8(t-T*) =\ (|+ ) (A-20L4)
'({ #< Opw # Optwy

Since each of the variations of Eq. (A-200) is independent, the coefficient of each
variation must vanish independently. The first term indicates that kp,T = K and
this can be substituted into the last term. If these operations are performed,

Eq. (A-200) becomes

T

Oppy  2m 1 Cnei\/CiP Cip
A y leimwi ff\:(g_ C‘)(_'___ - X )— '—}df =0 -20¢
1 ac, aw,C;"’ ) Me, n K m (A-205)
2 2760 lwz [ iy \/CaP c
HF2 c2rw2 c2 2 2P
A + ( -~——-‘)(——*x>-—— - 20
“Toac, 2y2C3 .[f\: 2 ez H # H dt =0 (a-206)
C
T
a/-"Fl) 27¢, C\p
X Q+ - ff(———x\)dwo (a-207)
# aF-we QW1C|2 s g
0
T
am> 27, f Cop
)N |+ - f( - A ) dt = 0 (A-208)
#T< Opwe “wzCS 4 H #
2

The four subsidiary conditions, Egs. (A-205) to (A-208), determine the optimum
values of the four parameters, Cq, Co, ) and by, .

ALl
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It is interesting to note that, although a definite time for discarding the
initial propulsion system was defined in formulating the problem (i.e., Tx), the
results turn out to be independent of Tx. These results are satisfying from a
physical point of view since it should not matter where in the coast period the
propulsion system is discarded.

Problem L

This problem has been motivated by the desire to find a practical thrusting
program for a solar-powered vehicle. Such a program has been presented in a twa-
dimensional analysis in Ref. A-3, where the thrust vector is constrained to make a
constant angle (in time) with the radius vector from the sun to the vehicle. Two
different angles were allowed before and after coast, and these congtant angles
were optimized.

In the present three-dimensional problem a vehicle is envisioned with an array
of solar panels (or a huge parabolic reflector), which is always maintained per-
pendicular to the radius vector for maximum efficiency. Rigidly attached to this
array at certain definite angles are two electric thrusters, one on either side of
the panels. By rotating the whole spacecraft about the radius vector, the thrust
vector can be changed while maintaining the solar panels perpendicular to the
direction of the solar radiation. The thrust vector is thus constrained to a
conical surface about the radius vector, the constant angle of which can be opti-
mized. In a rendezvous mission one thruster is used before cocast and the other
after, thereby avoiding exhausting propellant through the solar panels.

Consider the typical spherical coordinate system in the sketch below.

X3 T A

o}
o} S

~ {
s>\

]

X

T is a unit vector in the direction of the thrust which makes a constant angle with
respect to the unit radius vector r. If T is projected into the plane perpendicular
to the radius vector (i.e., the plane defined by the unit vectors €g and €y), the
projection makes a variable angle ¥ with respect to the unit vector 8p. Positive ¥
is defined as the angle that the unit vector must pass through for it to coincide
with the projection of T when the triad is rotated about é} such that a right-hand

-
.

screw would move in the direction of the positive €,
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The following wvector relations are used.

T = €pcos A +EgsinAcosy +§¢sinAsin\P (A-209)
- - X - X == X
er:|-?,l ﬁ"‘l--Fz--‘l""('?é (A-210)
- T XXz = XpX3 ¥ P -
ee-l—-'T + | oy kl’ (Agll)
- = X2 - X
eg=-ip * 75 (A-212)

Where p is the projection of the radius vector, ¥, onto the ecliptic plane.

Substituting Eqs. (A-210) to (A-212) into Eg. (A-209) T can be expressed in terms of
the Cartesian vector components.

- _=T[X Xi*3 . X2 . .
T o= —r—cosA+ smAcosq/——P—— sinAsiny

re
=X XoX X
+ [—rz— COSA + $p3 sinAcos¥ + —pl— sin Asin \Pi‘ (A-213)

- X
+ k {TB CosA - —-'?—— sinAcosW}

Using Eq. (A-213) the differential equations of constraint, Egs. (A-28), may
be written.

Xi 5 Xiys (i=1,2,3) (A-214)
. bc {xl XX
T ee— —_ 3 . X2 . X -
*q n f8 r CosA+ 5P sinAcos y — - SinA sin xp} — __rg (A-215)

. bC X2 X2 X3 X
Xs = o~ fB[TCOSAw“ —rp SinAcosy + —p—l- sinA sin\l,} - X_i (A-216)
.
: b X X
Xg —:— fB[—rES—cosA - ——f— sin A cos \P] - —r% (A-217)
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L= —pfB — ped(t-Ty ‘ (A-218)
A=0 (a-219)
Furthermore, impose the restriction that

Al for t <« Tl
A =3 (A-220)
Ao for t > T2

Once again it is most convenient to express the problem in the Mayer form.
The objective function will be maximum final mass for given values of C and Py .
These last factors could again be optimized, but this is not considered to be

warranted at the present stage. Other factors besides payload optimization may
determine Wy .

Z =Ky (A-221)
where agsin K is any positive constant.

The variational Hamiltonian, Eq. (A-37), is now written.

3 Xi bCfB‘ X
- |
H=2 [)*ixi+3 - >\1+3‘;'3—]+ m [COSAEMHT‘
i=1 i=

* SmAriﬁosw (Xj X3Xa + X2 X3X5 = p2Xg) (h-222)
sinAsiny
T (X ks~ X >\4)} N, bfB - x##*s(t-m

The control variables are V and B(t). The continuous control variable ¥ may be
determined in terms of the state and adjoint variables through the use of Eq. (A-4T).

OH bCfBsinA [_ sin

E_\Ir— =0 = p r ( X X3>\4+X2X3)\5“ p2 Ag) + COS\P(X;)\5 - X2>\4)] (A—223)

r{Xohg = X3 A ’
tany = (X274 = %1 25) (A-22h)
X3 (X1 Ag + X2X5)-p2hg

Whereas before the control variables only depended on the adjoint variables, in
this problem an additional coupling has been introduced by the thrusting constraint.

A-L
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In determining the thrusting angle ¥ from Eq. (A-224), there is a choice of two

quadrants. One will minimize the Hamiltonian while the other will maximize it.

The Pontryagin maximum principle, Eq. (A-6L), states that the choice must be the
latter.

Next, the Welerstrass-Erdmann corner conditions, Eq. (A-63), are examined at
the switeching points Tl and. T2 where B changes from 1 to O and vice versa. In order
for H to be continuous at Ty and T, the coefficient of B in Eq. (A-222) must vanish
at these points since all other terms are continuous. The switching function,vy ,
for this problem can be written in concise form as

T o SinAsing 5y )]—x# (A-225)

_ C [cosA — —~  sinAcosy =

where
0] ‘)\e )\5 Xl
r= -2 0 Al % (A-226)
>\5 )\4 0 X3
and
_ 010 X,
P={1 oo} xe (A-227)
00O X3

The Hamiltonlan can again be written as
3 X
ey [Nixi,s )\i+3ﬁ]+bf8y— N e (=T (a-228)
i=i

Applying the maximum principle it is seen that the same condition holds for the
discrete control variable B.

B =

1L for ¥ >0
|

O for ¥ <O

The Buler~Lagrange equations are now determined.
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©QdH _ Ais3 3% of dy
Ni+3s = TG +—% jZﬂxm X +b37-5x—i +be‘5§ (A-229)
X# . __g_;}} . bC#fZB [corsA AL I:;osw 5L sin Apsim# . (B x ?)](A-230)
. _ 0H _ bcfB [sinA = = cosAcosy =, =, cosAsiny = = —-}
)\A——OA - 2 — P~ P P T k (pxr)l(a-231)

The last equation will be used along with transversality conditions to determine
the optimum values of A, and Ao on either side of the coast period. The partials
dv/ 0x4 in Egs. (A-229) are rather involved and will not be presented here. 1In
taking the partial derivative of Eq. (A-225) with respect to Xi, it must be remem-
bered that § is a function of x; through Eq. (A-224).

The general transversality condition, Eq. (A-80), for this problem is
T T,

6 !
_de.T+[—Hd\‘+i; A, dx; + de,L}O+ xAldAl‘o F

T

da, = C (A-232)
2 T2

where the switching times T; and Tp,as far as the angles A, and Ap are concerned,
are regarded as internal boundaries. For the case of fixed-time planetary rendez-
vous, dt = dxj = O, (J =1...6), and since both Ay and A, are constant in time,

da,(0) = dA(T)),
dA,(T,) = dAyT)

(A-233)

and

Equation (A-232) becomes
(K (M) dpr + (3 () =2, (0) dA + (M, (1= 2y (T)) A= c (A-23L)

Since d“*r’ dAl and dA, are independent variations, their respective coeffi-
cients in Eq. (A-234) must each be zero.

T
/

Aa (Ti) =X, (0) = ,{; Npdt=0 (A-235)

T
— — / -—
M (T ™ A (T = _/;2 Ay dt=0 (A-236)
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Using Eqs. (A-220) and (A-231), Eqs. (A-235 and (A-236) become

T T —
. T PT T lcos y BT ~-rsiny k- (pxT)| fdt
Sin A, f aal fdt — cos A, f [ Ve vk-(p ] = 0 (A-237)
el pr £ pre
2

where Eq. (A-237) represents two equations, one for the upper subscripts on A and
the upper limits of integration and the other for the lower quantities. Transposing
Eg. (A-237), one obtains

N
7

_/; (,,Lrp)—I [COS ¢z?7—~ r sin\p? : (_6 x'?)] fdt
tan A, = 2 (A-238)

T' -|.,_,,_.>
: St B 7 et

T

2
Equations (A-238) determine the optimum constant values of A and A,.

The equations associated with mass, Egs. (A-218) and (A-230), can be inte-
grated by numerical dquadrature..

T

N T
ph=1-b [ £ (7,08 dr—,_L*j; f(r-T,)dt (4-239)
0

T o= ,
f(T,7) Bi7) [cos,/.\ 37 4 sinA cosy P

M) = A +0C [

pe r re
A s (A-240)
_ SinAsing = (B x?)} dt
p
Again p and are not independently scaled. The same condition must be satisfied
by the primer vector magnitude at the switching times.
P Pe (A-110)
H H2

Since y =0 at T, Eq. (A-225) shows that

- a s H — inA 1 — — -
COSA> - SINA; COSyy — = _ SInA, siny, (P, x ﬁ)} (A-241)

f P " Py ' Pi

and the scaling of Ay at O can be determined from Eg. (A-240) with t = Ty
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For the other boundary conditions of planetary flyby, flyby at a given radius,
and fixed-time orbital transfer, the results of Problem 1 may be consulted because
the conditions are in each case the same. Of course, in the case of flyby, there
is only one switching time Tq and only one of Egs. (A-238) is required.

A48
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Appendix A Nomenclature - Part 2

Angle between thrust vector and radius vector

Initial thrust acceleration

Fractional time rate of change of vehicle mass

Exhaust velocity

Conventional orthonormal vector basils for spherical coordinates
Power available function of position and time

Planetary position and velocity functions of central angle
Variational Hamiltonian

Conventional orthonormal vector basis for Cartesian coordinates
Arbitrary positive constant

Vehicle mass

Power available

Primer vector

Radius (given constant)

Radius vector

Given Instant of time

Time

Position coordinates

Objective function (corresponds to the auxiliary state variable,
z , of the Appendix)

Powerplant specific mass
Discrete control wvariable

Switching function
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NOMENCLATURE (cont'd)

6 (t-Ty) Dirac delta function
1 for v=1
61y Kroneker delta =
0 for v% 1
€ Small quantity
Ne Thruster power conversion efficiency
9 Standard spherical coordinate angle
ki Adjoint variable (or Lagrange multiplier) conjugate to position

coordinate x5

Xi+3 Adjoint variable conjugate to velocity component x;

ku Adjoint variable conjugate to the mass

" Vehicle mass fraction (based on initial mass)

B Thruster fraction

Moy Powerplant fraction

g Structure fraction

T Fraction of initial mass discarded at staging point

g Orbital central angle

Y Projection of radius vector onto ecliptic plane

T Time - (dummy integration variable)

? Unit vector in the direction of thrust

@ Standard spherical coordinate angle

{ éﬂgle bgtwaen unit vector E% and the projection of T onto the
€g and eg
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APPENDIX B

DERIVATION OF PLANETOCENTRIC EQUATIONS FOR
HIGH-LOW THRUST OPERATIONS

The first integrals of the equation of motion in differential form which
describes the trajectory of a thrusting vehicle within a planetary gravitational
field are derived. The form of the vehicle thrust acceleration is displayed.

The basic equation of motion in polar coordinates for vehicles thrusting in a
planetary gravitational field is:

= 1o ~ -
L =-2—1dr + 0 iy
et (B-1)

where C = nondimensional radial distance
o = nondimensional vehicle thrust acceleration
ig = unit vector in radial direction

iy = unit vector in direction of ingtantaneous velocity

Consider the two vector operations C - ( ) and Cx ( )

C:C=-L2 C-i+0Viy - iy, {=Viy
gz

a v ~

_ = - - at + 0V

ar 2 ¢ ar

and
@ ¥ .1 _3y
atT 2 ¢

B-1
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but,
v o_l.g
2 C
where E dis vehicle total energy.
Therefore, ,
& . Sy
Now,
PR LNz ~ =
CxC=Tx (-3) 3 +F(@Txi)
but,
- . > 1 4
C= (C-CP)i+7 & (€N
where N = azimuthal angle
Ea = unit vector in azimuthal direction

i, = ig x 1,

- = é_ 2 4y =
and txT=72(F M1
Also,

- - -

1v=§,‘1g +_§__ﬂ i,
and

— —-— 2 —

€ x iy =€VT‘12
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Therefore,

i (e gy -2LEN
aT v

Let

H=C 1 (instantaneous vehicle angular momentum)

so that

~

a cH
e (H) = = (B-3)

The conversion from dimensional variables to nondimensional variables may be
mad: as follows:

¢ = r/rPO
Vo= v/ve,,
c = gngo

To= Ve, /Tro
i = e/viPo
H = h/rpo VCPO

C = Isp g@ /VCPO (B")‘“)

The thrust acceleration of the vehicle is either

o(7) = o (B-5a)

or,

5'01/(1 - GiCT) , T 2 o (Departure)

o(t) = |

Lobo/(l - OB% T), T < o (Capture) (B-5b)

B-3
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where, o = constant thrust acceleration (C - «)
oy = initial thrust acceleration of vehicle
Ogo = final thrust acceleration of vehicle
C = exhaust speed
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APPENDIX C

CONSTANT LOW-THRUST PLANETOCENTRIC SPIRAL

Perkins' Generalized Equations of Motion

The problem of analyzing the performance of an electrically propelled vehicle
departing from or arriving onto a parking orbit has been studied by Perkins
(Ref. C-1) and extended by Edelbaum (Ref. C-2). The approach to be discussed is
based largely on the results of Perkins and Edelbaum and is oriented primarily
towards simplifying the analytical techniques as much as possible.

The low-thrust vehicle of mass, m, is under constant thrust, F, which is
applied tangentially, thereby resulting in the instantaneous velocity vector, V,
along the path. The thrust 1s applied at an angle, 6, to the local horizontal and
at a radial distance, R, from the center of the planet (Fig. C-1).

/

/

/

/

//
/ / \\
/ / \
ll l/ \\ \\
. 3
\\ \ CIRCULAR / /’
\\ \\ ORBIT / /
\ \\\-_'// //

‘\\\\\\\ ",,/’

Fig. C-1 Low-Thrust Spiral
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The total acceleration along the radius is given by

ﬁ_(,v2> RE w  F R
"\R R R " m V

where u is the planet's gravity constant. The first two terms on the right are
the centrifugal acceleration, the third term 1s the acceleration of gravity at R,

and the last term is the vertical component of thrust acceleration.

The total acceleration along the flight path is given by

- F n R
Vim T RT W
The rate of change of mass is
i e F_ F
¢ 1-SF‘gO

where C 1s the exhaust velocity and g, is the standard acceleration of gravity on
the Earth's surface.

To express the differential equations in a form independent of the gravity
constant and thrust acceleration, Perkins introduces the following dimensionless
parameters; radius, X; velocity, ¥; and time, T, defined according to

172
X A (F/mE> R,
,L.L

and

3/4
(F/rnp_)/
= —pa— b
where the thrust acceleration, F/mE, 1s referenced to escape conditions by using
the mass of the vehicle at escape, mp. To account for the varlation in mass,

Edelbaum defines a dimensionless exhaust velocity, Z, and a characteristic veloclty,
W, by
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N
28 (wm) o

A Me’
we Z ln( m)

and

Introducing the foregoing parameters into the differentlal equations of
motion and making W the lndependent variable yilelds

eZW/Z )(”+..Z(_./.__x_ -_\.(_2.-(____)(/)2_ !
Z Y TOX X X2
and
/
Y/= | - A ]

where the prime notation indicates differentiation with respect to W. Because
these equations are independent of the thrust-to-weight ratio, specific impulse,
and mass of the planet, any solution of these equations represents a family of
solutions of the original differential equations corresponding to different values
of thrust-to-weight ratio, specific impulse, and initial conditions. Further,
where the solution is independent of the initial conditions, one solution curve
will suffice for all cases. This circumstance occurs when the local flight condi-
tions approximate a circular orbit.

If the vehicle thrust-to-weight ratio is less than 102 starting on a
circular orbit, X and its derivatives are small and the first of the above differ-
ential equations becomes Y2 = 1/X. This relationship defines circular orbital
flight and, hence, for very small local thrust-to-weight ratios, the trajectory is
quasi-circular. Consequently, the vehicle will pass through the initial conditions
of other low-thrust trajectories with the same mean velocity, radius, and flight
path angle regardless of the starting time and positlon. Thus, any low-thrust
spiral trajectory may be represented by one curve of ¥ versus X or Y versus W, each
of which depends only on Z.

The results of a numerical integration of the generalized equations are
presented in Figs. C-2, C-3, and C-l4. Positive values of Z correspond to departure
from & circular orbit while negative values correspond to approach. The constant
thrust-acceleration results of Ref. 1 are included in these figures and correspond
tO the case of Z — =,

From Fig. C-3 it can be seen that the curves approach a slope of -1 at high
circular velocities and a slope of +1 at high hyperbolic velocities. Thus it is
possible to utilize simple linear expressions for the dimensionless characteristic
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velocity, W, (referenced to escape) required to reach a mean path velocity, Y. As
an example, if the lower asymptotes are used (conservative basis), then

Y =4+W 4094l =2 ln(—";n“:—) + 0.941,

for either starting from (+Z) or arriving at (-Z) escape conditions with final or
inltial, respectively, high hyperbolic speeds. Also

m
Y=-W+0805:= -2 In(—%—) +0.805

for either starting from (+Z) or arriving onto (-Z) a circular orbit with final or
inltial, respectively, escape speed.

A region of valldity can be described depending on a given tolerable error.
If an error of about 5% 1s acceptable, then

W< -1.0and Y > 1.8 between circular and escape velocity,
W>+1.0and Y > 1.95 between escape and hyperbolic velocity.

Thus, to use the simplified expressions it is necessary to assure that no case is
encountered which leads to W's and Y's which violate the above restrictions.
Use of Simplified Expressions

The following discussion presents the results of translating the dimensionless
equations into vehicle system and trajectory terms.

Planetary Departure

If the vehicle starts from a circular orbit and goes to escape conditions, the
equation is

y=-zIn(ZE) 4 0805
=-2in(gE) +o

Substituting the definitions of Y and Z, and after some manipulating, the mass
ratio required is

/4 1/4
Me F/mg > ( Mc > ] } circular orbit to

V,
_:x{_g[__ <_____
me exp c L!-0805 p/R2 escape

C-k
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where my is the initilal mass on the circular orblt, Vg is the circular speed, and
o is the mass al escape. The term F/mC is the initial thrust-to-weight ratio.
Note that because the thrust-to-weight ratio is usually known at the initiation
of low thrust rather than at burnout, an iterative procedure is required to
determine mC/mE. Alternatively, an explicit form may be obtained by expanding the
exponential and using the fact that mC/mE is approximately 1.0,

If the vehicle starts from escape velocity and is to achleve a hyperbolic
velocity, Vg, at infinity, the appropriate equation is

-z in(Ze 0.94l
Y=17 n(—l:ﬁ;‘—>+ .

This can be translated into system terms. Thus

m 94 i/4
el exp[-%?._ 9ji_!<fL.__) ] escape to hyperbolic

where my is the mass at infinity and F/mE is the initial thrust-to-weight ratio.
Since F/mE is known initially, mE/mH may be computed directly.

The mass ratio required to achieve a hyperbolic speed starting from a circular
parking orbit may be found by combining the two foregoing portions of the overall
trajectory. Hence

/4 1/4
Mg {VH Ve [ (F/mc> (mc> ]}
—. = eX —_ + — |1 -1.74
; p c C 6 Rcz : | clrcular to hyperbolic

where mc/mE is found from the circular orbit-to-escape equation and F/mC is the
initial thrust-to-weight ratio.

The corresponding limitations on velocity, assuming an allowable error of
about 5%, become

F m
Ve 21.8(p———> (—J;> circular to escape

C-5
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/4
Vg 2 I.95<u.—F—-> escape to hyperbolic
) mE

Planetary Capture

For a vehicle at infinity approaching the planet with some hyperbolic speed,
the corresponding linear equation is

. Mg
Y =Zin (m—H>+ 0.941

Substituting the definitlons for Y and Z and accounting for Z being negative for
capture, the mass ratio equation becomes

My Vg 094l F A4 /my\/4
ﬁg = eXp[—C— - T("Tﬁ;) (mg—> ] hyperbolic to escape

where My 1s the initial mass and F/mH the initlal thrust-to-weight ratio. Again,
because the thrust-to-weight ratio is known at startup rather than at burnout, an
lterative procedure is necessary to determine mH/mE.

Using the same procedure as before, the mass ratlo necessary to achileve a
clrecular orbit from an initial escape velocity is given by

Me _ oxp {YC [1- 0g0s( /M )" to cireul
Fn—c—— D{—C—*[ - 0. (/_L/RCZ) ]} escape o circular

The two foregoing expressions are combined to obtain the mass ratio required
for capturing onto a circular orbit from a hyperbolic velocity at infinity. Thus

/4 1/4
My VH VC F/mH my . .
— = exp{—— + == [l— 1.746 ———) ]} hyperbolic to circular
m C C "L/RCE mE

where mH/mC is the ratio of the initlal mass to the mass on the circular orbit and
mH/mE is obtained from the hyperbolic-to-escape equation.
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The appropriate limlitations on velocity for a low-thrust planetary capture
spiral are given by

F /4 -
Ve 2 1.8 (y.ﬁ—E-) circular to escape
/4 i/a
F My :
Vi, 2 1.95{ p — — i
H (#'“E> <”1E> hyperbolic to escape

As can be seen, the utllity of the foregoing overall approach to the analysis
of low-thrust planetocentric operations 1s in the relatively simple equations
involved; it is not necessary to solve a system of differential equations. The
limitation of this simplified approach, however, is in the restriction of circular
and hyperbolic speeds required by the linearized dimensionless equations. An
example of this restriction is shown in Table C-1. Note that some values of Y are
less than the maximum of 1.95 allowed for thrusting to some hyperbolic speed. An
additional basic limitation is the assumption that the wvehicle possesses & glven
hyperbolic velocity at the planet's sphere of influence rather than at infinity.

c-7
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TABLE C-l

RADIUS DISTANCE WHERE HYPERBOLIC SPEED IS ACHIEVED

Hyperbolic speed = 4.5 km/sec
Ion thrustor, d = 20 km/sec
Powerplant specific mass = 20 kg/kw
Earth's activity sphere = 116 Earth Radii

c, km/sec W Y Rpos, Farth radiil
40 0.006 3.04 134
0.020 2.25 41.6
0.100 1.51 6.6
100 0.006 3.72 296
0.020 2.75 96
0.100 1.84 18
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FLIGHT PATH ANGLE AT VARIOUS RADIUS DISTANCES

CONSTANT LOW -THRUST PLANETOCENTRIC SPIRAL
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